logo
Дифуры

[Править] Алгоритм решения

(1)

(2)

(3)

Возьмём (3).1 и проинтегрируем по переменной t:

(*)

Подставим в (3).2:

В получившемся равенстве слагаемые, содержащие t, уничтожатся. Получим: . Проинтегрируем по x и подставим в (*).

Всегда можно привести его к уравнению такого типа умножением на некоторую не равную нулю функцию , называемую интегрирующим множителем. Но не всегда легко найти такую функцию.

Если интегрирующий множитель уравнения (1), уравнение

является уравнением в полных дифференциалах:

,

т.е. интегрирующий множитель есть решение уравнения

                                                      .                                                        (5)

Найти функцию из уравнения (5) в общем случае довольно сложно. В частных случаях соотношение (5) значительно упрощается.

Случай 1. Если уравнение (1) имеет интегрирующий множитель, зависящий только от x, т.е. , то из (5) имеем

.

Случай 2. Если уравнение (1) допускает интегрирующий множитель как функцию одной переменной y, т.е. , то

.

Случай 3. Если уравнение (1) имеет интегрирующий множитель вида , где - известная функция, то

.

Общее решение уравнения, записанное в неявной форме Φ(x, y) = C, называется общим интегралом уравнения.

Yandex.RTB R-A-252273-3