Импликация.
Импликация соответствует конструкции «Если …. то».
Определение. Импликацией высказываний a и b называется высказывание, обозначаемое a → b ( и определяемое следующей таблицей
0 0 1
0 1 1
1 0 0
1 1 1
т.е. импликация ложна тогда и только тогда, когда a – истина, а b – ложь.
a – посылка, b − заключение.
Восприятию определения импликации сопротивляется, хотя в математике оно очень часто нами используется. Из арифметики известна теорема «если целое число делится на шесть, то оно делится на два» − высказывание Q. Высказывание а(x) – «число делится на шесть»; высказывание b(x) – «число делится на два», тогда Q(x) ≡ a(x) → b(x). Ясно, что при x = 6, 2, 3 реализуются четвертая, вторая и первая строки. Однако, нельзя подобрать число для третьей строки.
Но можно привести и другие примеры. Например, «если сын сдаст сессию на отлично, то отец купит ему машину. В нашем случае события а и b могут быть концептуально совсем не связаны. Возможны импликации вида «Если сегодня четверг, то 2 х 2 = 5». Эта импликация верна во все дни, кроме четверга.
Приведенные операции не являются независимыми. Одни из них могут быть выражены через другие.
Теорема 1.Справедливы следующие равносильности:
Докажем с помощью таблицы истинности первое соотношение.
0 0 1 1 1
0 1 1 1 1
1 0 0 0 0
1 1 0 1 1
Справедливость первого соотношения доказывается тождественностью последних столбцов.
Из приведенных равносильностей видно, что → и ~ выражаются через
Можно показать, что через операции можно выразить любую операцию алгебры высказываний. Поэтому в дальнейшем основное внимание уделяется этим операциям, которые называются булевскими (булевыми) операциями алгебры высказываний. Джордж Буль (1815 – 1864) – английский математик, основатель символической логики, которую теперь принято называть булевой алгеброй.
Теорема 2. Справедливы следующие равносильности для булевой алгебры высказываний:
- Дискретная математика.
- Множества.
- П римеры
- Или по другому
- Операции над множествами.
- Основные свойства операций над множествами.
- Алгебра высказываний.
- Логические операции над высказываниями.
- Отрицание.
- Конъюнкция.
- Эквиваленция
- Импликация.
- Формулы алгебры высказываний.
- Элементарные высказывания, символы логических переменных – формулы;
- Если f1 и f2 – формулы алгебры высказываний, то
- Других формул алгебры высказываний нет.
- Равносильность формул.
- Совершенная дизъюнктивная нормальная форма.
- Приведение формулы к сднф.
- Совершенная конъюнктивная нормальная форма.
- Приведение формулы к скнф.
- Полнота и замкнутость.
- Минимизация днф.
- Способы задания булевых функций.
- Табличный способ задания.
- Графический способ задания.
- Аналитический способ задания.
- Элементы теории графов.
- Матрицы графов.
- Некоторые общие понятия теории графов.
- Взвешенные графы и алгоритмы поиска кратчайшего пути.
- Задача о кратчайших путях.
- Элементы теории алгоритмов.
- Понятие автомата.
- Машина Тьюринга.
- Автомат Мили.
- Правило суммы.
- Правило прямого произведения.
- Размещения с повторениями.
- Размещения без повторений.
- Перестановки.
- Сочетания.
- Сочетания с повторениями.