Теор
V. Кореляційний момент:
Обчислення
Легко показати, що
Обчислення
Якщо величини та незалежні, кореляційний момент дорівнює нулю.
Содержание
- Елементи теорії ймовірностей
- §1. Означення ймовірності
- Простіші властивості ймовірності
- Класичне означення ймовірності
- VII. Геометрична ймовірність.
- VIII. Умовна ймовірність. Формула Байєса.
- §2. Послідовності незалежних випробувань
- I. Послідовність незалежних випробувань.
- II. Схема Бернуллі
- Iіi. Граничні теореми у схемі Бернуллі
- §3. Випадкові величини
- II. Дискретна випадкова величина
- III. Неперервна випадкова величина
- §4. Нормальний розподіл та його властивості
- §5. Кореляція
- V. Кореляційний момент:
- Vі. Коефіцієнт кореляції
- Vіі. Лінійна регресія -
- Елементи математичної статистики
- §1 Вибірка та її характеристики
- Варіаційний ряд.
- Емпірична (вибіркова) функція розподілу
- Полігон частот
- Гістограма
- §2 Задача перевірки статистичних гіпотез
- Гіпотеза про параметри нормального розподілу : .
- Гіпотеза про параметри нормального розподілу : .
- Гіпотеза про закон розподілу. Критерій Колмогорова.
- §3. Довірчі інтервали
- §4. Вибіркова кореляція
- §5. Значущість вибіркового коефіцієнту кореляції
- §6. Критерій , як критерій незалежності ознак