logo
В

Тема 10. Обыкновенные дифференциальные уравнения (ду) и системы дифференциальных уравнений (сду)

37. Физические задачи, приводящие к ДУ. ДУ с разделяющимися переменными. ДУ первого порядка. Теорема существования и единственности решения задачи Коши.

38. Основные классы уравнений, интегрируемых в квадратурах (уравнения в полных дифференциалах, однородные ДУ, уравнения Бернулли и т.д.).

39. ДУ высших порядков. Задача Коши. Уравнения, допускающие понижение порядка. Приложения к решению задач о 2-й космической скорости, движении физического маятника. Понятие о краевых задачах для ДУ.

40. Линейные ДУ, их общие свойства. Линейные ДУ с постоянными коэффициентами со специальной правой частью. Метод Лагранжа.

41. Системы ДУ (СДУ). Нормальные системы ДУ, свойства их решений. Задача Коши. Линейные СДУ. Методы их решения. Автономные системы. Свойства их решений. Фазовые пространства, плоскость, фазовая кривая. Простейшие численные методы решения ДУ и СДУ.

42. Понятие о качественных методах исследования ДУ и СДУ. Понятие об устойчивости и асимптотической устойчивости по Ляпунову. Устойчивость решения системы ДУ с постоянными коэффициентами.