Дискретные случайные величины. Числовые характеристики дискретной случайной величины и их свойства
Случайной величиной называется величина, принимающая в результате опыта одно из своих возможных значений, причем заранее неизвестно, какое именно.
Случайная величина называется дискретной, если указано конечное или счетное мн-во чисел x1,x2… и каждому из этих чисел xiпоставлено в соответствие pj.(т.е. если она принимает отдельные, изолированные возможные значения с определенными вероятностями).
Для задания дискретной случайной величины нужно знать ее возможные значения и вероятности, с которыми принимаются эти значения. Соответствие между ними называется законом распределения случайной величины. Он может иметь вид таблицы, формулы или графика.
Таблица, в которой перечислены возможные значения дискретной случайной величины и соответствующие им вероятности, называется рядом распределения:
xi | x1 | x2 | … | xn | … |
pi | p1 | p2 | … | pn | … |
Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.
Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности.M(X)=
Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно.
С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.
, p(x)=F’(x)
В частности, , если возможные значения принадлежат интервалу ( a , b )
Свойства:
М(С) = С.
М(СХ) = С М(Х).
M(XY) = M(X)M(Y).
M (X + Y) = M (X) + M (Y).
Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.
D(X) = M(X ²) – M ²(X).
Свойства:
D (C) = 0.
D(CX) = C²D(X).
D(X – Y) = D(X) + D(Y).
Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии: σ=
- Предмет теории вероятностей. Основные понятия теории вероятностей. Статистическое и классическое определение вероятности
- Аксиомы тв
- Размещения, перестановки и сочетания
- Правила суммы и произведения
- Условная вероятность
- Формула полной вероятности. Формула Байеса
- Дискретные случайные величины. Числовые характеристики дискретной случайной величины и их свойства
- Функция распределения и её свойства
- Непрерывные случайные величины. Плотность вероятности и её свойства. Числовые характеристики непрерывной случайной величины
- Распределения дискретной случайной величины
- Распределения непрерывной случайной величины
- Закон больших чисел
- Понятие о теореме Ляпунова. Центральная предельная теорема
- Многомерные случайные величины. Определение системы случайных величин. Закон распределения вероятностей дискретной двумерной случайной величины
- Функция распределения двумерной случайной величины и её свойства
- Двумерная плотность вероятности и её свойства. Нахождение функции распределения системы по известной плотности распределения
- Зависимые и независимые случайные величины. Корреляционый момент. Коэффициент корреляции
- Коррелированность и зависимость случайных величин. Нормальный закон распределения на плоскости
- Линейная регрессия. Прямые линии среднеквадратической регрессии. Линейная корреляция. Нормальная корреляция.
- Основные понятия математической статистики. Числовые характеристика вариативного ряда
- Основные понятия математической статистики. Числовые характеристика вариативного ряда