37. Инвариантность систем.
Инвариант – отображение φ рассматриваемой совокупности М математических объектов, снабженной фиксированным отношением эквивалентности ρ, в другую совокупность N математических объектов, постоянное на классах эквивалентности М по ρ. Концепция инвариант является одной из важнейших в математике, поскольку изучение инварианта непосредственно связано с задачами классификации объектов того или иного типа. Проблема инвариантности.
Это проблема определения таких структур и параметров систем управления, при которых влияние некоторых произвольно меняющихся внешних воздействий и собственных параметров системы на динамические характеристики процессов управления могут быть частично или полностью компенсированы.
Более простая постановка – требуется сделать по возможности независимой ту или иную переменную (обобщенную координату) от одного или нескольких внешних воздействий.
Рассмотрим линейную стационарную систему с тремя степенями свободы, состоящую из - объекта регулирования с регулируемой координатой х1(t) - регулятора с двумя обобщенными координатами х2(t) и х3(t) а11x1(t)+ а12x2(t)+ а13x3(t)=f1(t) – возмущенное воздействие на объект а21x1(t)+ а22x2(t)+ а23x3(t)=g(t) – управляющее воздействие а31x1(t)+ а32x2(t)+ а33x3(t)=f3(t) – возмущение на регулятор aij=mijp2+lijp+rij, где ; i,j=1, 2, 3 р = d/dt Допустим, что функция удовлетворяет требованиям оригинала, и перейдем от дифференциальных уравнений к уравнениям алгебраическим с помощью преобразования Лапласа.
структура системы
Упорядоченность системы заключается в том, что порядковый номер уравнения соответствует номеру обобщенной координаты, для которой это уравнение составлено. Поэтому элементы главной диагонали операторной матрицы (р) представляют собой собственные (характеристические) операторы каждой из обобщенных координат схемы. Остальные операторы отражают воздействие одних обобщенных координат на другие.
- 44. Фракталы, определение и примеры
- 43. Моделирование и подобие. Получение критериев подобия с помощью метода интегральных аналогов (пример с уравнением Навье-Стокса)
- 42. Моделирование и подобие; динамические аналогии; критерии подобия. Пи-теорема.
- Компьютерные модели в автоматизированном управлении
- 40. Прямой метод Ляпунова
- 39. Подход к оценке устойчивости по линеаризованным уравнениям.
- 38. Определение устойчивости, устойчивость по Ляпунову
- 37. Инвариантность систем.
- 36. Управляемость и наблюдаемость
- 35.Представление в пространстве состояний и модель «вход-выход»
- 34. Единый подход к линеаризации.
- 33. Общая схема нечеткого вывода.
- 32. Нечеткое представление информации; типовые функции принадлежности, мера нечеткости.
- 31. Факторный анализ
- 30. Метод главных компонент
- 1.Среднее арифметическое переменных
- 7. Считаем дискриминантные функции
- 24. Непараметрическая статистика Манна-Уитни.
- 23. Составление статистических оценок ; анализ наиболее часто используемых законов распределения.
- 22. Составление статистической оценки на основе распределения Колмогорова – Смирнова.
- 21. Составление статистической оценки на основе распределения Фишера.
- 20. Составление статистических оценок ; анализ наиболее часто используемых законов распределения.
- 19. Общий подход к составлению статистических оценок
- 18. Проблема оценки адекватности моделей
- 17. Матричная форма мнк при построении модели (этап проверки адекватности полученной модели).
- 16. Матричная форма мнк при построении модели (этап проверки значимости коэффициентов модели).
- 15. Матричная форма мнк при построении модели (этап оценки коэффициентов модели).
- 13. Метод ранговой корреляции по Спирмэну.
- 12. Виды зависимостей. Корр анализ; коэффициенты частной и множественной корреляции.
- 11. Виды зависимостей. Корр анализ; коэфф парной корр-ии.
- 10.Метод наименьших квадратов - базовый метод получения коэффициентов регрессионных уравнений.
- 9.Виды зависимостей. Регрессионный анализ.
- 8. Классификация задач управления; задача оценивания.
- Классификация задач управления; задача адаптивного управления
- Классификация задач управления; задача детерминированного и стохастического управления.
- Классификация задач управления. Задача идентификации.
- 3.Методология построения детерминированных моделей.
- 4.Основные виды зависимостей.
- 2. Общие подходы к построению моделей с учетом характера исходной информации.
- Классификация моделей.
- 1. Дискретно - детерминированные модели
- 2. Непрерывно - детерминированные модели
- 3. Дискретно - стохастические модели
- 4. Непрерывно - стохастические модели