logo
чёткие шпоры по григу

37. Инвариантность систем.

Инвариант – отображение φ рассматриваемой совокупности М математических объектов, снабженной фиксированным отношением эквивалентности ρ, в другую совокупность N математических объектов, постоянное на классах эквивалентности М по ρ. Концепция инвариант является одной из важнейших в математике, поскольку изучение инварианта непосредственно связано с задачами классификации объектов того или иного типа. Проблема инвариантности.

Это проблема определения таких структур и параметров систем управления, при которых влияние некоторых произвольно меняющихся внешних воздействий и собственных параметров системы на динамические характеристики процессов управления могут быть частично или полностью компенсированы.

Более простая постановка – требуется сделать по возможности независимой ту или иную переменную (обобщенную координату) от одного или нескольких внешних воздействий.

Рассмотрим линейную стационарную систему с тремя степенями свободы, состоящую из - объекта регулирования с регулируемой координатой х1(t) - регулятора с двумя обобщенными координатами х2(t) и х3(t) а11x1(t)+ а12x2(t)+ а13x3(t)=f1(t) – возмущенное воздействие на объект а21x1(t)+ а22x2(t)+ а23x3(t)=g(t) – управляющее воздействие а31x1(t)+ а32x2(t)+ а33x3(t)=f3(t) – возмущение на регулятор aij=mijp2+lijp+rij, где ; i,j=1, 2, 3 р = d/dt Допустим, что функция удовлетворяет требованиям оригинала, и перейдем от дифференциальных уравнений к уравнениям алгебраическим с помощью преобразования Лапласа.

структура системы

Упорядоченность системы заключается в том, что порядковый номер уравнения соответствует номеру обобщенной координаты, для которой это уравнение составлено. Поэтому элементы главной диагонали операторной матрицы (р) представляют собой собственные (характеристические) операторы каждой из обобщенных координат схемы. Остальные операторы отражают воздействие одних обобщенных координат на другие.