чёткие шпоры по григу
39. Подход к оценке устойчивости по линеаризованным уравнениям.
Составим уравнения возмущенного движения yj(t) = fj(t) + xj(t) Подставим в уравнение (1)
где - совокупность членов, зависящих от отклонений xi в степени выше первой. Учтем, что в невозмущенном движении функции fj(t) должны удовлетворять уравнению (1), т.е.
Тогда диф. уравнения возмущенного движения
в общем случае являются функциями времени, в частности могут быть постоянными. Если в уравнениях (12) отбросить члены , то полученные при этом уравнения называются уравнениями первого приближения.
Ур-ия первого приближения во многих случаях дают верный ответ на вопрос об устойчивости движения, но иногда заключение, которое можно получить из этих приближенных ур-ий ничего общего не имеет с решением исходных уравнений
Содержание
- 44. Фракталы, определение и примеры
- 43. Моделирование и подобие. Получение критериев подобия с помощью метода интегральных аналогов (пример с уравнением Навье-Стокса)
- 42. Моделирование и подобие; динамические аналогии; критерии подобия. Пи-теорема.
- Компьютерные модели в автоматизированном управлении
- 40. Прямой метод Ляпунова
- 39. Подход к оценке устойчивости по линеаризованным уравнениям.
- 38. Определение устойчивости, устойчивость по Ляпунову
- 37. Инвариантность систем.
- 36. Управляемость и наблюдаемость
- 35.Представление в пространстве состояний и модель «вход-выход»
- 34. Единый подход к линеаризации.
- 33. Общая схема нечеткого вывода.
- 32. Нечеткое представление информации; типовые функции принадлежности, мера нечеткости.
- 31. Факторный анализ
- 30. Метод главных компонент
- 1.Среднее арифметическое переменных
- 7. Считаем дискриминантные функции
- 24. Непараметрическая статистика Манна-Уитни.
- 23. Составление статистических оценок ; анализ наиболее часто используемых законов распределения.
- 22. Составление статистической оценки на основе распределения Колмогорова – Смирнова.
- 21. Составление статистической оценки на основе распределения Фишера.
- 20. Составление статистических оценок ; анализ наиболее часто используемых законов распределения.
- 19. Общий подход к составлению статистических оценок
- 18. Проблема оценки адекватности моделей
- 17. Матричная форма мнк при построении модели (этап проверки адекватности полученной модели).
- 16. Матричная форма мнк при построении модели (этап проверки значимости коэффициентов модели).
- 15. Матричная форма мнк при построении модели (этап оценки коэффициентов модели).
- 13. Метод ранговой корреляции по Спирмэну.
- 12. Виды зависимостей. Корр анализ; коэффициенты частной и множественной корреляции.
- 11. Виды зависимостей. Корр анализ; коэфф парной корр-ии.
- 10.Метод наименьших квадратов - базовый метод получения коэффициентов регрессионных уравнений.
- 9.Виды зависимостей. Регрессионный анализ.
- 8. Классификация задач управления; задача оценивания.
- Классификация задач управления; задача адаптивного управления
- Классификация задач управления; задача детерминированного и стохастического управления.
- Классификация задач управления. Задача идентификации.
- 3.Методология построения детерминированных моделей.
- 4.Основные виды зависимостей.
- 2. Общие подходы к построению моделей с учетом характера исходной информации.
- Классификация моделей.
- 1. Дискретно - детерминированные модели
- 2. Непрерывно - детерминированные модели
- 3. Дискретно - стохастические модели
- 4. Непрерывно - стохастические модели