Компьютерные модели в автоматизированном управлении
Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т.н. вычислительные эксперименты, в тех случаях когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.
Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов - сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.
К основным этапам компьютерного моделирования относятся:
постановка задачи, определение объекта моделирования;
разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия;
формализация, то есть переход к математической модели; создание алгоритма и написание программы;
планирование и проведение компьютерных экспериментов;
анализ и интерпретация результатов.
Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма(ов), воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.
- 44. Фракталы, определение и примеры
- 43. Моделирование и подобие. Получение критериев подобия с помощью метода интегральных аналогов (пример с уравнением Навье-Стокса)
- 42. Моделирование и подобие; динамические аналогии; критерии подобия. Пи-теорема.
- Компьютерные модели в автоматизированном управлении
- 40. Прямой метод Ляпунова
- 39. Подход к оценке устойчивости по линеаризованным уравнениям.
- 38. Определение устойчивости, устойчивость по Ляпунову
- 37. Инвариантность систем.
- 36. Управляемость и наблюдаемость
- 35.Представление в пространстве состояний и модель «вход-выход»
- 34. Единый подход к линеаризации.
- 33. Общая схема нечеткого вывода.
- 32. Нечеткое представление информации; типовые функции принадлежности, мера нечеткости.
- 31. Факторный анализ
- 30. Метод главных компонент
- 1.Среднее арифметическое переменных
- 7. Считаем дискриминантные функции
- 24. Непараметрическая статистика Манна-Уитни.
- 23. Составление статистических оценок ; анализ наиболее часто используемых законов распределения.
- 22. Составление статистической оценки на основе распределения Колмогорова – Смирнова.
- 21. Составление статистической оценки на основе распределения Фишера.
- 20. Составление статистических оценок ; анализ наиболее часто используемых законов распределения.
- 19. Общий подход к составлению статистических оценок
- 18. Проблема оценки адекватности моделей
- 17. Матричная форма мнк при построении модели (этап проверки адекватности полученной модели).
- 16. Матричная форма мнк при построении модели (этап проверки значимости коэффициентов модели).
- 15. Матричная форма мнк при построении модели (этап оценки коэффициентов модели).
- 13. Метод ранговой корреляции по Спирмэну.
- 12. Виды зависимостей. Корр анализ; коэффициенты частной и множественной корреляции.
- 11. Виды зависимостей. Корр анализ; коэфф парной корр-ии.
- 10.Метод наименьших квадратов - базовый метод получения коэффициентов регрессионных уравнений.
- 9.Виды зависимостей. Регрессионный анализ.
- 8. Классификация задач управления; задача оценивания.
- Классификация задач управления; задача адаптивного управления
- Классификация задач управления; задача детерминированного и стохастического управления.
- Классификация задач управления. Задача идентификации.
- 3.Методология построения детерминированных моделей.
- 4.Основные виды зависимостей.
- 2. Общие подходы к построению моделей с учетом характера исходной информации.
- Классификация моделей.
- 1. Дискретно - детерминированные модели
- 2. Непрерывно - детерминированные модели
- 3. Дискретно - стохастические модели
- 4. Непрерывно - стохастические модели