Классическое определение вероятности случайного события
Под вероятностью случайного событияв математике понимают меру возможности осуществления данного события в конкретных условиях эксперимента (испытания).
Рассмотрим некоторую конечную полную группу равновозможных элементарных событий (исходов) т. е. совокупность всех единственно возможных, несовместных и вместе с тем равновозможных результатов некоторого испытания, причем пусть интересующее нас случайное событие A осуществляется тогда и только тогда, когда наступают некоторые из элементарных событий указанной полной группы. Пусть таких событий, благоприятствующих для события A, насчитываетсяm(естественно,m<n). Тогда вероятность события A определяют следующим образом:
Определение. Вероятностью Р(А) случайного события A называется отношение количестваmэлементарных событий, благоприятствующих событию A, к общему количеству элементарных событийn:
, (1)
Поскольку в общем случае 0<m<n, то из этого определения, называемого классическим определением вероятности случайного события, следует, что вероятность произвольного случайного события принадлежит отрезку, т.е.
0<P(A)<1, (2)
Пример 1. Найти вероятность того, что при извлечении наугад одной таблетки из коробки, в которой находятся 2 таблетки анальгина, 3 таблетки аспирина и 5 таблеток димидрола, извлеченная таблетка окажется таблеткой аспирина.
Решение. Поскольку общее количество элементарных событий (исходов) для данного испытания образует полную группу из n = 10 равновозможных событий (по общему количеству таблеток в коробке), из которых толькоm= 3 элементарных события (по количеству таблеток аспирина) являются благоприятствующими для интересующего нас события (обозначим это событие через A), по формуле (1) получим:
- Случайные события
- Некоторые виды событий
- Классическое определение вероятности случайного события
- Случайные величины
- Понятие дискретных и непрерывных случайных величин
- Дискретные случайные величины
- Основные числовые характеристики дискретной случайной величины
- Непрерывные случайные величины
- Основные числовые характеристики непрерывной случайной величины
- Нормальный закон распределения (закон Гаусса)
- Анализ вариабельности сердечного ритма
- Вариационная пульсометрия
- Статистические методы
- Показатели статистического анализа (временной анализ).
- Вероятностный подход
- Перечень основных показателей вариабельности сердечного ритма
- Упражнения
- Задание