logo search
Алгебраїчний метод розв’язку геометричних задач

b) За теоремою Вієта.

Припустимо, що розглянуте рівняння має вигляд:

Якщо позначимо його корені буквами , то будемо мати (по теоремі Віета):

. (3)

Друга з цих формул показує, що корені мають однакові знаки; тому перша формула може бути написана так:

Таким чином, досить побудувати два відрізки, сума яких дорівнює даному відрізкові m, а добуток .

З цією метою на відрізку АВ= m (рис 2), як на діаметрі, будуємо окружність АВМ. Потім будуємо пряму MN паралельну прямій АВ і віддалену від неї на відстані n. Тоді перпендикуляр МР визначить на прямій АВ точку Р. Відрізки АР, РВ і представляють корені , взяті за абсолютним значенням.

Дійсно , будемо мати:

АР+РВ=АВ= m, АР*РВ= = .

Як уже було раніше сказано, рівняння (1) має дійсні корені за умови n. На рисунку (2) цей факт виступає особливо наочно. Справді, при пряма паралельна АВ і віддалена від неї на відстані n, не перетинала б окружності (АВМ)

Якщо рівняння має вигляд

Тоді його корені мають різні знаки, як це видно за добутком (-

Отже, їх алгебраїчну суму можна порахувати віднімаючи відповідні відрізки.

Побудова коренів у цьому випадку може бути зроблене в такий спосіб (рис.3). З довільної точки О радіусом ОМ описуємо окружність. У довільній точці М цієї окружності проводимо дотичну до неї і відкладаємо на ній відрізок MN=n. Через точки N і O проводимо пряму, що перетинає окружність у точках А и В. Тоді відрізки AN і N зображують абсолютні величини коренів квадратного рівняння. Справді,

AN-BN=AB=m.

AN*BN==

Очевидно, що корені рівняння (2) завжди дійсні і побудова рис.3 завжди можлива.

Продемонструємо побудову коренів квадратного рівняння на задачі про розподіл відрізка в середнім і крайнім відношеннях.

Як відомо, у цій задачі потрібно даний відрізок розділити на два таких, щоб більший з них був середнім пропорційним між усім відрізком і меншим.

Якщо позначимо довжину даного відрізка через а, а довжину шуканого більшого відрізка через х, то умови задачі можна виразити в такий спосіб:

а:х=х(а-х),

що дає квадратне рівняння

Таким чином, рішення задачі зводиться до побудови коренів квадратного рівняння, що може бути зроблене як по формулі дискримінанту, так і по теоремі Віета.

Так, наприклад якщо на рис.3 покласти , то відрізок дає рішення задачі. Другий корінь AN(AN>a),мабуть, не задовольняє умовам задачі і повинний бути відкинутий.