1.1 Поняття про алгебраічний метод у геометрії побудов циркулем і лінійкою
У задачах на побудову серед даних елементів можуть бути деякі відрізки, кути, співвідношення відрізків. Виявляється, що усі дані елементи можна виразити тільки відрізками. Наприклад, кут можна задати трьома відрізками -- сторонами трикутника, один з кутів якого дорівнює даному.
Дані відрізки і їх довжини будемо позначати першими літерами англійського алфавіту a, b, c, d, e, m, n, а невідомі Ї x, y, z, u, v. За допомогою деяких співвідношень невідомі відрізки можна виразити через дані як певні функції даних: .
Користуючись цими формулами, можна побудувати шукані відрізки певними інструментами, а, отже, розвязати задачу на побудову.
Побудова відрізків, виражених формулами через дані відрізки, циркулем і лінійкою зводиться до таких простіших основних формул, відомих з шкільного курсу математики:
1) ; 2) ; 3) ; 4) ; 5)
Питання про можливість зведення формули, що виражає шуканий відрізок через дані, звязане з поняттям однорідності формули, однорідності многочлена. Нагадаємо, що виміром або степенем цілого раціонального одночлена називається сума показників букв, які до нього входять. Якщо всі члени многочлена мають один і той же вимір, то такий многочлен називається однорідним, а показник степеня -- виміром або степенем однорідності многочлена.
Можна довести, що циркулем і лінійкою можна побудувати тільки відрізки, виражені через дані відрізки однорідними виразами першого виміру. Такими є названі десять основних формул. Однорідні вирази не першого виміру циркулем і лінійкою безпосередньо побудувати не можна, але їх можна звести до першого виміру за допомогою одиничного відрізка, взятого у відповідному степені.
Так, відрізки , , безпосередньо побудувати не можна, але вибравши якийсь відрізок е за одиничний, можна вирази в правій частині звести до першого виміру, взявши відповідно
- Вступ
- Розділ 1. Основні теоретичні відомості, що стосуються методу у геометричних побудовах
- 1.1 Поняття про алгебраічний метод у геометрії побудов циркулем і лінійкою
- 1.2 Побудова основних формул
- 1.2.1) Побудова коренів квадратного рівняння
- a) За формулами.
- b) За теоремою Вієта.
- 1.2.2) Поняття про однорідні функції
- 1.2.3) Побудова деяких однорідних виразів циркулем і лінійкою.
- 1.2.4) Характеристична властивість функції, що визначає довжину того самого відрізка при будь-якому виборі одиниці виміру
- 1.2.5 Побудова виразів, що не є однорідними функціями 1-го виміру від довжин даних відрізків
- 1.2.6) Ознака можливості побудови відрізка, що є заданою функцією даних відрізків
- Розділ 2. Застосування алгебраїчного методу у розвязку геометричних задач на побудову
- 2.1 Схема розвязування задач на побудову алгебраїчним методом
- 2.2 Розвязування задач на побудову
- Висновки
- 3. У залежності від того, які логічні операції застосовуються при розв'язанні задач, розрізняють методи розв'язування - аналітичний, синтетичний, та аналітико-синтетичний.
- Розв’язок задач. Методичні рекомендації
- Методи зображення геометричних фігур Контрольна робота Пояснювальна записка
- Алгебраїчний метод:
- 22. У залежності від того, які логічні операції застосовуються при розв'язанні задач, розрізняють методи розв'язування - аналітичний, синтетичний, та аналітико-синтетичний.
- Тема 28. Лінійне програмування. Геометричний і симплексний методи розв’язування злп
- §4. Алгебраїчний метод розв'язування геометричних задач на побудову
- Прийоми розв’язування задач
- Геометричний зміст задач лінійного програмування