Алгебраїчний метод розв’язку геометричних задач
a) За формулами.
Припустимо, що умови задачі на побудову можуть бути виражені квадратним рівнянням. Рівняння запишемо в однорідній формі:
(1)
Одержимо:
=,
=.
З цих формул ясно, що рівняння зводиться до побудови радикала . Але це знайома побудова катета прямокутного трикутника по гіпотенузі та іншому катеті n.
Дійсно значення для одержимо за умови ?n.
Помітимо, що коефіцієнти m і n у рівнянні (1), що виражає довжини відрізків, передбачаються додатніми.
Якби дане квадратне рівняння мало вигляд:
(2)
Тоді ми будували б побудовою гіпотенузи прямокутного трикутника по двох його катетах і n.
У такому випадку корені рівняння (2) завжди дійсні і зміна знака b коефіцієнта m не змінює побудови.
рис.2
Содержание
- Вступ
- Розділ 1. Основні теоретичні відомості, що стосуються методу у геометричних побудовах
- 1.1 Поняття про алгебраічний метод у геометрії побудов циркулем і лінійкою
- 1.2 Побудова основних формул
- 1.2.1) Побудова коренів квадратного рівняння
- a) За формулами.
- b) За теоремою Вієта.
- 1.2.2) Поняття про однорідні функції
- 1.2.3) Побудова деяких однорідних виразів циркулем і лінійкою.
- 1.2.4) Характеристична властивість функції, що визначає довжину того самого відрізка при будь-якому виборі одиниці виміру
- 1.2.5 Побудова виразів, що не є однорідними функціями 1-го виміру від довжин даних відрізків
- 1.2.6) Ознака можливості побудови відрізка, що є заданою функцією даних відрізків
- Розділ 2. Застосування алгебраїчного методу у розвязку геометричних задач на побудову
- 2.1 Схема розвязування задач на побудову алгебраїчним методом
- 2.2 Розвязування задач на побудову
- Висновки
Похожие материалы
- 3. У залежності від того, які логічні операції застосовуються при розв'язанні задач, розрізняють методи розв'язування - аналітичний, синтетичний, та аналітико-синтетичний.
- Розв’язок задач. Методичні рекомендації
- Методи зображення геометричних фігур Контрольна робота Пояснювальна записка
- Алгебраїчний метод:
- 22. У залежності від того, які логічні операції застосовуються при розв'язанні задач, розрізняють методи розв'язування - аналітичний, синтетичний, та аналітико-синтетичний.
- Тема 28. Лінійне програмування. Геометричний і симплексний методи розв’язування злп
- §4. Алгебраїчний метод розв'язування геометричних задач на побудову
- Прийоми розв’язування задач
- Геометричний зміст задач лінійного програмування