1.4 Послевоенная работа
Война завершилась, и Колмогоров возвращается к мирным исследованиям. Трудно даже кратко осветить вклад Колмогорова в другие области математики -- общую теорию операций над множествами, теорию интеграла, теорию информации, гидродинамику, небесную механику и т. д. вплоть до лингвистики. Во всех этих дисциплинах многие методы и теоремы Колмогорова являются, по общему признанию, классическими, а влияние его работ, как и работ его многочисленных учеников, среди которых немало выдающихся математиков, на общий ход развития математики чрезвычайно велико.
Когда одного из молодых коллег Колмогорова спросили, какие чувства он испытывает по отношению к своему учителю, тот ответил: «Паническое уважение… Знаете, Андрей Николаевич одаривает нас таким количеством своих блестящих идей, что их хватило бы на сотни прекрасных разработок».
Замечательная закономерность: многие из учеников Колмогорова, обретая самостоятельность, начинали играть ведущую роль в избранном направлении исследований. И академик с гордостью подчёркивает, что наиболее дороги ему ученики, превзошедшие учителя в научных поисках. Можно удивляться колмогоровскому подвижничеству, его способности одновременно заниматься -- и небезуспешно! -- сразу множеством дел. Это и руководство университетской лабораторией статистических методов исследования, и заботы о физико-математической школе-интернате, инициатором создания которой Андрей Николаевич являлся, и дела московского математического общества, и работа в редколлегиях «Кванта» -- журнала для школьников и «Математики в школе» -- методического журнала для учителей, и научная и преподавательская деятельность, и подготовка статей, брошюр, книг, учебников. Колмогорова никогда не приходилось упрашивать выступить на студенческом диспуте, встретиться со школьниками на вечере. По сути дела, он всегда был в окружении молодых. Его очень любили, к его мнению всегда прислушивались. Свою роль играл не только авторитет всемирно известного ученого, но и простота, внимание, духовная щедрость, которую он излучал.
Круг жизненных интересов Андрея Николаевича не замыкался чистой математикой, объединению отдельных разделов которой в одно целое он посвятил свою жизнь. Его увлекали и философские проблемы (например, он сформулировал новый гносеологический принцип -- Гносеологический принцип А.Н. Колмогорова), и история науки, и живопись, и литература, и музыка.
Академик Колмогоров -- почётный член многих иностранных академий и научных обществ. В марте 1963 года учёный был удостоен международной премии Бальцана (этой премией он был награжден вместе с композитором Хиндемитом, биологом Фришем, историком Моррисоном и главой Римской католической церкви Папой Иоанном XXIII). В том же году Андрею Николаевичу было присвоено звание Героя Социалистического Труда. В 1965 году ему присуждена Ленинская премия (совместно с В.И. Арнольдом). В последние годы Колмогоров заведовал кафедрой математической логики.
«Я принадлежу, -- говорил учёный, -- к тем крайне отчаянным кибернетикам, которые не видят никаких принципиальных ограничений в кибернетическом подходе к проблеме жизни и полагают, что можно анализировать жизнь во всей её полноте, в том числе и человеческое сознание, методами кибернетики. Продвижение в понимании механизма высшей нервной деятельности, включая и высшие проявления человеческого творчества, по-моему, ничего не убавляет в ценности и красоте творческих достижений человека».
По меткому выражению Стефана Банаха: «Математик -- это тот, кто умеет находить аналогии между утверждениями. Лучший математик -- кто устанавливает аналогии доказательств. Более сильный может заметить аналогии теорий. Но есть и такие, кто между аналогиями видит аналогии». К этим редким представителям последних относится и Андрей Николаевич Колмогоров -- один из крупнейших математиков двадцатого века.
Колмогоров скончался 20 октября 1987 г. в Москве. Похоронен на Новодевичьем кладбище.
- Вступление
- Основная часть
- 1. Биография
- 1.1 Ранние годы
- 1.2 Университет
- 1.3 Профессор
- 1.4 Послевоенная работа
- 2. Работы Колмагорова А.Н
- 2.1 Колмогоровские аксиомы элементарной теории вероятностей
- 2.2 Колмогоровская эмпирическая дедукция аксиом
- 2.3 Аксиома непрерывности и бесконечные вероятностные пространства
- 2.4 Бесконечные вероятностные пространства и «идеальные события»
- 2.5 Двойственность Колмогорова
- 2.6 Гносеологический принцип
- 2.7 Средние Колмогорова
- 2.8 Колмогоровы теоремы
- Заключение
- 39.Критерии согласия Колмогорова.
- А.Н. Толстой
- 1. Этапы научной биографии а.Н. Леонтьева
- А.Н. Граборов
- 3.3.2. Критерий а.Н. Колмогорова
- Критерий колмогорова
- Андрей Николаевич Колмогоров
- В.6. Уравнения Колмогорова в системах массового обслуживания. Уравнения Колмогорова для вероятностей состояния
- Уравнения Колмогорова.