2.8 Колмогоровы теоремы
Колмогоровы теоремы:
1. Теорема о нормированных пространствах (1934);
2. Теорема о применимости больших чисел закона (1928);
3. Теорема о применимости больших чисел усиленного закона (1930, 1933).
2.8.1 Теорема о нормированных пространствах
Нормированное пространство - векторное пространство X, наделенное нормой ||x||, xX. Норма индуцирует на Х метрику с(x, y) = ||x-y|| и, следовательно, топологию, совместимую с этой метрикой. Полные относительно указанной метрики пространства называются банаховыми пространствами. Нормированное пространство тогда и только тогда является гильбертовым, когда
||x+y|| + ||x-y|| = 2*||x||2 + 2*||y||2 для x, y X.
Отделимое топологическое векторное пространство нормируемо, если его топология совместима с некоторой нормой. Нормируемость равносильна существованию выпуклой ограниченной окрестности нуля.
2.8.2 Теорема о применимости больших чисел закона
Данная теорема Колмогорова дает ответ на вопрос: при каких условиях суммы Yn предельно постоянны?
Не ограничивая общности, можно предположить, что медианы величин Хn,k равны нулю; пусть ?Хn,k = Хn,k при | Хn,k |?1 и ?Хn,k = 0 при | Хn,k |>1, тогда одновременное выполнение двух условий
при
и
при
Необходимо и достаточно для предельного постоянства сумм Yn . В качестве Сn можно взять . Если математические ожидания существуют, то легко указать дополнительные условия, при которых можно выбрать Сn = EYn , что приводит к необходимым и достаточным условиям больших чисел закона в классической формулировке, т.е.
.
Для последовательности независимых одинаково распределенных величин {Xn} эти условия сводятся, в соответствии с теоремой Хинчина, к существованию математического ожидания. В то же время для предельного постоянства средних арифметических Yn в этом случае необходимо и достаточно условие при .
2.8.3 Теорема о применимости больших чисел усиленного закона
В случае независимых слагаемых наиболее известными являются условия приложимости больших чисел усиленного закона, установленные А.Н.Колмогоровым: достаточное (1930) - для величин с конечными дисперсиями и необходимое и достаточное (1933) - для одинаково распределенных величин (закрепляющееся в существовании математического ожидания величин Xi). Теорема Колмогорова для случайных величин X1, X2, …, Xn, …с конечными дисперсиями утверждает, что из условия
вытекает приложимость к последовательности X1, X2, …, Xn, … больших чисел усиленного закона
.
В терминах дисперсий условие
оказывается наилучшим в том смысле, что для любой последовательности положительных чисел bn с расходящимся рядом
можно построить последовательность независимых случайных величин Xn с DXn = bn , не удовлетворяющую больших чисел усиленному закону. Область применения условия
может быть расширена на основе следующего замечания. Пусть mXn - медиана Xn. Сходимость ряда
необходима для больших чисел усиленного закона. Из леммы Бореля-Кантелли вытекает, что
с вероятностью 1, начиная с некоторого номера. Поэтому при изучении условий приложимости больших чисел усиленного закона можно сразу ограничиться случайными величинами, удовлетворяющими последнему условию.
В доказательствах А.Я. Хинчина и А.Н. Колмогорова вместо сходимости ряда
устанавливается сходимость ряда
,
где nk = 2k. При этом А.Н. Колмогоров использовал носящее его имя неравенство для максимумов сумм случайных величин.
- Вступление
- Основная часть
- 1. Биография
- 1.1 Ранние годы
- 1.2 Университет
- 1.3 Профессор
- 1.4 Послевоенная работа
- 2. Работы Колмагорова А.Н
- 2.1 Колмогоровские аксиомы элементарной теории вероятностей
- 2.2 Колмогоровская эмпирическая дедукция аксиом
- 2.3 Аксиома непрерывности и бесконечные вероятностные пространства
- 2.4 Бесконечные вероятностные пространства и «идеальные события»
- 2.5 Двойственность Колмогорова
- 2.6 Гносеологический принцип
- 2.7 Средние Колмогорова
- 2.8 Колмогоровы теоремы
- Заключение
- 39.Критерии согласия Колмогорова.
- А.Н. Толстой
- 1. Этапы научной биографии а.Н. Леонтьева
- А.Н. Граборов
- 3.3.2. Критерий а.Н. Колмогорова
- Критерий колмогорова
- Андрей Николаевич Колмогоров
- В.6. Уравнения Колмогорова в системах массового обслуживания. Уравнения Колмогорова для вероятностей состояния
- Уравнения Колмогорова.