2.4 Бесконечные вероятностные пространства и «идеальные события»
Алгебра F событий пространства элементарных событий Щ называется борелевской алгеброй, если все счётные суммы событий xn из F принадлежат F. В современной теории вероятностей борелевские алгебры событий обычно называют у-алгебрами событий (сигма-алгебрами).
Пусть дано вероятностное пространство в расширенном смысле (Щ, F0, P). Известно, что существует наименьшая сигма-алгебра F = у(F0), содержащая F0.
Более того, справедлива теорема (о продолжении). Определённую на (Щ, F0) неотрицательную счётно-аддитивную функцию множеств P = P(?) всегда можно продолжить с сохранением обоих свойств (неотрицательности и счётной аддитивности) на все множества из F и при этом единственным образом.
Таким образом, каждое вероятностное пространство (Щ, F0, P) в расширенном смысле может быть математически корректно продолжено до бесконечного вероятностного пространства (Щ, F, P), которое в современной теории вероятностей принято называть просто вероятностным пространством.
Вместе с тем множества из сигма-алгебры F бесконечного вероятностного пространства можно рассматривать только как «идеальные события», которым ничего не соответствует в реальном мире.
Если, однако, рассуждение, которое использует вероятности таких «идеальных событий» приводит к определению вероятностей «реального события» из F, то это определение, очевидно, автоматически будет непротиворечивым и с эмпирической точки зрения.
- Вступление
- Основная часть
- 1. Биография
- 1.1 Ранние годы
- 1.2 Университет
- 1.3 Профессор
- 1.4 Послевоенная работа
- 2. Работы Колмагорова А.Н
- 2.1 Колмогоровские аксиомы элементарной теории вероятностей
- 2.2 Колмогоровская эмпирическая дедукция аксиом
- 2.3 Аксиома непрерывности и бесконечные вероятностные пространства
- 2.4 Бесконечные вероятностные пространства и «идеальные события»
- 2.5 Двойственность Колмогорова
- 2.6 Гносеологический принцип
- 2.7 Средние Колмогорова
- 2.8 Колмогоровы теоремы
- Заключение
- 39.Критерии согласия Колмогорова.
- А.Н. Толстой
- 1. Этапы научной биографии а.Н. Леонтьева
- А.Н. Граборов
- 3.3.2. Критерий а.Н. Колмогорова
- Критерий колмогорова
- Андрей Николаевич Колмогоров
- В.6. Уравнения Колмогорова в системах массового обслуживания. Уравнения Колмогорова для вероятностей состояния
- Уравнения Колмогорова.