§ 6. Простые числа
Натуральное число p называется простым, если оно имеет ровно два различных между собой натуральных делителя: 1 и p. Натуральное число, большее единицы, называется составным, если оно не является простым.
Примеры: 1. 2, 3, 5, 37, 101 – простые числа,
2. 4, 6, 8, 9, 123, 1024 – составные числа,
3. числа –7, –128, –1024 – не являются ни простыми, ни составными,
4. числа 0, +1, –1 – не являются ни простыми, ни составными.
Таким образом, любое натуральное число либо равно единице, либо является простым, либо – составным. Аналогично, множество всех целых чисел разбивается на пять непересекающихся подмножеств – множество всех простых чисел, множество всех составных чисел, множество чисел противоположных простым, множество чисел противоположных составным и множество {–1, 0, +1}.
П 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, … 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, … 1, 0, 2, 2, 2, 2, 2, 2, 4, … 1, 2, 0, 0, 0, 0, 0, 2, … 1, 2, 0, 0, 0, 0, 2, … 1, 2, 0, 0, 0, 2, … 1, 2, 0, 0, 2, … 1, 2, 0, 2, … 1, 2, 2, … 1, 0, … 1, …
- Министерство образования и науки Российской Федерации
- Глава I. Азы теории чисел
- § 1. Деление целых чисел с остатком
- 5709 Mmmmmdссiiiiiiiii,
- Перевод числа из десятичной системы счисления в q-ичную
- Перевод числа из q-чной системы счисления в десятичную (схема Горнера)
- Перевод числа из одной системы счисления в другую
- Арифметические действия в позиционных системах счисления
- § 2. Деление целых чисел нацело
- Свойства делимости нацело
- § 3. Наибольший общий делитель и наименьшее общее кратное
- Основные свойства наибольшего общего делителя и наименьшего общего кратного
- § 4. Алгоритм Евклида
- Расширенный алгоритм Евклида
- § 5. Взаимно простые числа
- Простейшие свойства взаимно простых чисел
- § 6. Простые числа
- Простейшие свойства простых чисел
- § 7. Простые числа в арифметических прогрессиях
- О распределении простых чисел
- § 8. Язык сравнений
- Свойства сравнений
- § 9. Функция Эйлера
- § 10. Теоремы Эйлера и Ферма
- § 11. Признаки делимости
- § 12. Принцип Дирихле
- Глава II. Некоторые диофантовы уравнения
- § 1. Линейные диофантовы уравнения
- § 2. Общее диофантово уравнение от одного переменного
- § 5. Пифагоровы тройки
- § 6. Уравнение Ферма-Пелля
- Глава III. Великая теорема ферма и abc – проблема
- § 1. Великая теорема Ферма
- § 2. Методы Эйлера-Куммера доказательства Великой теоремы Ферма
- § 3. Гипотеза Таниямы и доказательство Великой теоремы Ферма
- § 4. Abc – Теорема для многочленов и её следствия
- § 5. Abc – Гипотеза для натуральных чисел
- § 6. Некоторые следствия из abc– гипотезы
- Глава IV. Задача о счастливых билетах
- § 1. Сведение задачи к задаче о числе наборов цифр с заданной суммой компонент
- § 2. Задача о числе наборов цифр с заданной суммой компонент
- § 3. Ещё одно решение задачи о числе наборов цифр с заданной суммой компонент