О распределении простых чисел
Для каждого положительного действительного числа x обозначим через (x) количество простых чисел в интервале (–, x]. Таким образом, получаем отображение : R N (называемое функцией Чебышева), значение которого можно вычислить для любого конкретного x R. Например, (x) = 0 при x < 2, (2) = 1 = (2,99), (3) = 2, (10) = 4 = (7,001). Возникает вопрос о поведении функции (x), более точно – о её порядке роста. Ограничимся только формулировками самых ранних и простых (но далеко не очевидных) результатов на эту тему:
Теорема (неравенства Чебышева). (1) Существуют такие константы 0 < a < 1 < b (например, годятся a = 0,92129, b = 1,0555), что для всех достаточно больших значений x R верны неравенства
.
Эта теорема была доказана в 1850 г. Кроме того, П.Л.Чебышевым было доказано, что если существует , то он равен 1. Существование же этого предела удалось доказать только спустя полвека, используя теорию функций комплексного переменного.
Теорема (Адамар, Валле-Пуссен) Предел существует и равен 1 (асимптотический закон распределения простых чисел).
В той же основополагающей работе П.Л.Чебышева, было дано доказательство следующей известной гипотезы
Теорема (постулат Бертрана). Для любого натурального числа n на отрезке [n; 2n] содержится хотя бы одно простое число.
В то же время, как показывает следующая теорема, существуют сколь угодно длинные отрезки, не содержащие простых чисел.
Теорема (о сколь угодно длинных отрезках, не содержащих простых чисел). Для любого натурального п на отрезке [п! + 2, п! + п] нет ни одного простого числа.
Доказательство. Любое число из рассматриваемого отрезка имеет вид п! + k, где 2 k n , и делится на k.
Теорема доказана.
Хотя современная теория чисел продвинулась далеко вперёд, многие вопросы о простых числах остаются нерешёнными и по сей день. Например, до сих пор неизвестно – конечны ли множества простых чисел вида 1 + n2 и 1 + 2n (n Z).
- Министерство образования и науки Российской Федерации
- Глава I. Азы теории чисел
- § 1. Деление целых чисел с остатком
- 5709 Mmmmmdссiiiiiiiii,
- Перевод числа из десятичной системы счисления в q-ичную
- Перевод числа из q-чной системы счисления в десятичную (схема Горнера)
- Перевод числа из одной системы счисления в другую
- Арифметические действия в позиционных системах счисления
- § 2. Деление целых чисел нацело
- Свойства делимости нацело
- § 3. Наибольший общий делитель и наименьшее общее кратное
- Основные свойства наибольшего общего делителя и наименьшего общего кратного
- § 4. Алгоритм Евклида
- Расширенный алгоритм Евклида
- § 5. Взаимно простые числа
- Простейшие свойства взаимно простых чисел
- § 6. Простые числа
- Простейшие свойства простых чисел
- § 7. Простые числа в арифметических прогрессиях
- О распределении простых чисел
- § 8. Язык сравнений
- Свойства сравнений
- § 9. Функция Эйлера
- § 10. Теоремы Эйлера и Ферма
- § 11. Признаки делимости
- § 12. Принцип Дирихле
- Глава II. Некоторые диофантовы уравнения
- § 1. Линейные диофантовы уравнения
- § 2. Общее диофантово уравнение от одного переменного
- § 5. Пифагоровы тройки
- § 6. Уравнение Ферма-Пелля
- Глава III. Великая теорема ферма и abc – проблема
- § 1. Великая теорема Ферма
- § 2. Методы Эйлера-Куммера доказательства Великой теоремы Ферма
- § 3. Гипотеза Таниямы и доказательство Великой теоремы Ферма
- § 4. Abc – Теорема для многочленов и её следствия
- § 5. Abc – Гипотеза для натуральных чисел
- § 6. Некоторые следствия из abc– гипотезы
- Глава IV. Задача о счастливых билетах
- § 1. Сведение задачи к задаче о числе наборов цифр с заданной суммой компонент
- § 2. Задача о числе наборов цифр с заданной суммой компонент
- § 3. Ещё одно решение задачи о числе наборов цифр с заданной суммой компонент