logo search
Высшая математика (Интегралы и дифференциальные уравнения) / 02 семестр / Разное / экзамен и дз15,18,23 вар / вроде биллеты / Экзаменационные билеты(с ответами)

1 Признак. Теорема. Пусть при выполнено неравенство .

Если интеграл сходится, то и интеграл сходится.

Если интеграл расходится, то и интеграл расходится.

Доказательство. Проинтегрируем неравенство на отрезке ,

. Так как обе функции на отрезке имеют только положительные значения, то интегралы от этих функций представляют собой возрастающие функции от верхнего предела b.

Если сходится (= I), то при любом b > a = I (I – конечное число).

Поэтому - монотонно возрастающая, ограниченная функция верхнего предела интегрирования b. Следовательно, по теореме Вейерштрасса этот интеграл как функция b имеет предел

, т.е. интеграл сходится.

Пусть теперь расходится. Если сходится, то по доказанному и сходится, противоречие. Теорема доказана.

Вообще-то, все было ясно из геометрического смысла определенного интеграла как площади криволинейной трапеции под графиком функции. Если значения одной функции больше, чем значения другой функции, то и соответствующая криволинейная трапеция имеет большую площадь. И если эта площадь конечна, то и меньшая площадь конечна. А если меньшая площадь бесконечна, то и большая площадь бесконечна. Но строгое доказательство не подведет, а «очевидное» иногда подводит.

2 признак сравнения. Теорема. Пусть при x>a . Если существует конечный предел , то интегралы , , сходятся или расходятся одновременно (если один сходится, то и другой сходится, если один расходится, то и другой расходится).

Доказательство. Из определения предела следует

.

Если интеграл сходится, то по первому признаку сравнения сходится интеграл , а, следовательно, сходится интеграл . Если интеграл сходится, то сходится интеграл , а, следовательно, по первому признаку сравнения сходится интеграл . Пусть интеграл расходится. Если интеграл сходится, то по первому признаку сравнения сходится интеграл , противоречие. Пусть интеграл расходится. Если интеграл сходится, то по первому признаку сравнения сходится интеграл , противоречие. Теорема доказана.

Эталонами служат обычно интегралы Дирихле или интегралы от показательной функции.

Пример. сходится по второму признаку сравнения, интеграл сравнения .

Пример. сходится по первому признаку, интеграл сравнения

.

  1. Доказать теорему о структуре общего решения неоднородной системы линейных дифференциальных уравнений первого порядка.

Общее решение неоднородной системы равно сумме общего решения однородной системы и частного решения неоднородной системы.

Доказательство. 1) - решение неоднородной системы по теореме о свойствах решений.

2) Зададим произвольные начальные условия . Выберем какое-либо частное решение неоднородное системы и вычислим для него начальные условия в . Составим систему уравнений и запишем ее покоординатно.

Определитель этой системы – определитель Вронского, он не равен нулю, так как составлен из линейно независимых решений, составляющих фундаментальную систему решений. Следовательно, набор констант из этой системы уравнений определяется однозначно. Теорема доказана.

  1. 5

    1. Определение несобственного интеграла от неограниченной функции на конечном отрезке интегрирования. Сформулировать признаки сходимости таких интегралов .