logo
Высшая математика (Интегралы и дифференциальные уравнения) / 02 семестр / Разное / экзамен и дз15,18,23 вар / вроде биллеты / Экзаменационные билеты(с ответами)

Теорема об оценке определенного интеграла.

Пусть на отрезке и функция интегрируема на отрезке. Тогда

Доказательство. Интегрируя по свойству 7 неравенство , с учетом свойства 5 получаем требуемое утверждение.

Теорема об оценке полезна, когда интеграл вычислить трудно или вообще невозможно, но приблизительно оценить его необходимо. Это часто встречается в инженерной практике.

Пример. . Такой интеграл «не берется». Но на отрезке . Поэтому, учитывая четность подинтегральной функции, получим . Конечно, это – очень грубая оценка, более точную оценку можно получить, применяя методы численного интегрирования.

  1. Доказать теорему о структуре общего решения однородной системы линейных дифференциальных уравнений первого порядка.

Общее решение однородной системы представляет собой линейную комбинацию решений фундаментальной системы решений.

.

Доказательство. Проверим, что является общим решением, исходя из определения общего решения.

  1. - решение однородной системы как линейная комбинация ее решений (теорема о свойствах решений).

  2. Зададим произвольные начальные условия и покажем, что можно единственным образом выбрать набор констант , при котором . Запишем это соотношение покоординатно как систему уравнений относительно .

Определитель этой системы равен , так как решения линейно независимы. Поэтому набор констант определяется из системы уравнений единственным образом. Теорема доказана.

Следствие. Общее решение однородной системы можно записать в виде

.