Метод наименьших квадратов
1) Выравнивание по прямой.
Пусть дана таблица (1). Построим на пл–ти точки (хі;уі). Предположим, что точки распологаются вдоль некоторой прямой у=ах+b. Переберем параметры а и b таким образом, чтобы прямая наиболее близко подходила к данным точкам.
Е1=ах1+b-y1
Е2=ах2+b-y2
……………………….
Еn=ахn+b-yn Для определения параметров а и b используем метод наименьших квадратов. Суть метода в том, чтобы определить а и b так, чтобы сумма квадратов отклонений была наименьшей. Выясним при каких значениях а и b ф–ция Ф(а;b) принимает наименьшее значение
Найдём критические точки:
Это нормальная система метода наименьших квадратов.
Решив эту систему найдём координаты критических точек. Можно док–ть, что в найденной критической точке ф–ция Ф(а;b) имеет min.
2) Выравнивание по параболе y=ax2+bx+c. По аналогии с линейной ф–цией составляем ф–цию Ф(a,b,c)? которая даёт сумму квадратов отклонений, и находим её наименьшее значение:
Найдя частные производные и приравняв их к нулю, после преобразований получим линейную систему трёх уравнений с тремя неизвестными a,b,c:
Можно док–ть, что определитель этой системы не равен нулю, а следовательно, система имеет единственное решение
- 1.Понятие функции нескольких переменных.
- 2. Предел и непрерывность функции двух переменных.
- 3. Непрерывность.
- 4. Частные производные.
- 6. Необходимое условие экстремума функции двух переменных.
- 7. Достаточное условие экстремума ф–ции двух переменных.
- 10. Методы наименьших квадратов…
- Метод наименьших квадратов
- 11.Понятие неопределенного интеграла
- 17. Интегрирование рациональных функций.
- 18. Интегрирование рациональных функций.
- 20. Приложение определенного интеграла в геометрии и экономике.
- 22. Формула Ньютона-Лейбница.
- 23,24. Замена переменной и интегрирование по частям в определенном интеграле.
- 25.Площадь плоской фигуры.
- 26.Объем тела вращения.
- 28. Несобственные интегралы.
- Интегралы с бесконечными пределами.
- 29. Несобственные интегралы от неограниченной функции.
- 30. Приближенное вычисление опред. Интеграла
- 31. Дифференциальные уравнения (основные понятия).
- 32. Ду первого порядка. Задача и теорема Коши.
- 35.Ду с разделяющимися переменными.
- 37 Линейные ду первого порядка
- 39. Линейные нердн. Ур-ния 2-го порядка
- 40. Линейные неоднородные ду второго порядка с постоянными коэффициентами и спец-й правой частью.
- 41. Метод вариации произвольной постоянной
- 42.43. Понятие числового ряда и сумма ряда. Геометрический ряд. Некоторые свойства числовых рядов.
- 44. Необходимый признак сходимости.
- 45. Признак сравнения
- 46. Знакочередующиеся ряды. Признак Лейбница. Оценка остатка.
- 47. Знакопеременные ряды. Абсолютная и условная сходимость.
- 48. Понятие функционального ряда. Область сходимости.
- 49.Степенные ряды. Теорема Абеля
- 50.Свойства степенных рядов
- 51,52.. Разложение в степенные ряды. Ряд Тейлора и Маклорена.
- 53. Разложение функций sin X, cos X, ex в ряд Маклорена. Биномиальный ряд