vyshka шпоры
30. Приближенное вычисление опред. Интеграла
Если сущ-ет конечный независящий от способа разбиения отрезка [a, b] на частичные отрезки и от выбора точек ξi соответствующих частичных отрезков [xi-1; xi] предел интегральной суммы (1) при , то этот предел называется определенным интегралом от функции f(x) на пром-ке от a до b и обозн-ся (2)В этом случае ф-ция называется интегрируемой на отрезке [a, b], a – нижний предел интегрирования, b – верхний предел интегрирования. Геометрический смысл опред-ого интеграла. Пусть f(x)≥0 на отрезке [a, b]
y=f(x) x=a
x=b y=0
Площадь ступенчатой фигуры:
σ = f(ξ1) ∆x1 + f(ξ2) ∆x2 +…+f(ξn) ∆xn =
равна интегральной сумме для ф-ции f(x) на отрезке [a, b]. Если сущ-ет ,то его прин-юза площадь криволинейной трапеции
Содержание
- 1.Понятие функции нескольких переменных.
- 2. Предел и непрерывность функции двух переменных.
- 3. Непрерывность.
- 4. Частные производные.
- 6. Необходимое условие экстремума функции двух переменных.
- 7. Достаточное условие экстремума ф–ции двух переменных.
- 10. Методы наименьших квадратов…
- Метод наименьших квадратов
- 11.Понятие неопределенного интеграла
- 17. Интегрирование рациональных функций.
- 18. Интегрирование рациональных функций.
- 20. Приложение определенного интеграла в геометрии и экономике.
- 22. Формула Ньютона-Лейбница.
- 23,24. Замена переменной и интегрирование по частям в определенном интеграле.
- 25.Площадь плоской фигуры.
- 26.Объем тела вращения.
- 28. Несобственные интегралы.
- Интегралы с бесконечными пределами.
- 29. Несобственные интегралы от неограниченной функции.
- 30. Приближенное вычисление опред. Интеграла
- 31. Дифференциальные уравнения (основные понятия).
- 32. Ду первого порядка. Задача и теорема Коши.
- 35.Ду с разделяющимися переменными.
- 37 Линейные ду первого порядка
- 39. Линейные нердн. Ур-ния 2-го порядка
- 40. Линейные неоднородные ду второго порядка с постоянными коэффициентами и спец-й правой частью.
- 41. Метод вариации произвольной постоянной
- 42.43. Понятие числового ряда и сумма ряда. Геометрический ряд. Некоторые свойства числовых рядов.
- 44. Необходимый признак сходимости.
- 45. Признак сравнения
- 46. Знакочередующиеся ряды. Признак Лейбница. Оценка остатка.
- 47. Знакопеременные ряды. Абсолютная и условная сходимость.
- 48. Понятие функционального ряда. Область сходимости.
- 49.Степенные ряды. Теорема Абеля
- 50.Свойства степенных рядов
- 51,52.. Разложение в степенные ряды. Ряд Тейлора и Маклорена.
- 53. Разложение функций sin X, cos X, ex в ряд Маклорена. Биномиальный ряд