logo
vyshka шпоры

1.Понятие функции нескольких переменных.

Пусть D-множество пар (x;y) действительных чисел и z-некоторое числовое множество. Если каждой паре (х;у)D по некоторому правилу поставлено в соответствие одно определенное число zZ, то говорят, что на множестве D задана функция z = f (x,y). x,y -независимые переменные ( аргументы ), D - область определения функции.

Так как каждой паре чисел (х,у) на плоскости соответствует единственная точка М(х,у) и наоборот, то функцию двух переменных можно рассматривать как функцию точки М(х,у) и вместо записи z = f (x,y) записывать z = f (M). Аналогично определяется функция n переменных: z = f (x1, x2, …, xn). Функцию двух переменных можно задать с помощью формулы, с помощью таблицы или графиком. Графиком функции двух переменных является некоторая поверхность.