vyshka шпоры
6. Необходимое условие экстремума функции двух переменных.
Т. Если ф–ция z=f(x;y) имеет в т.М0(х0;y0) экстремум и в этой точке конечный частные производные 1–ого порядка, то они =0, т.е. f 'x(x0;y0)=0 и f 'y(x0;y0)=0.
Док–во: рассмотрим в окрестности т.М0 только те точки, для которых у=у0. Тогда мы получим ф–цию f (x0;y0) одной переменной и т.к. эта ф–ция в т.М0 имеет экстремум при х=х0, то её первая производная f 'x(x0;y0)=0.
Аналогично можно показать, что в тМ0 f 'y(x0;y0)=0
Точки, в которых частные производные 1–ого порядка обращаются в 0 называются критическими или подозрительными на экстремум.
Содержание
- 1.Понятие функции нескольких переменных.
- 2. Предел и непрерывность функции двух переменных.
- 3. Непрерывность.
- 4. Частные производные.
- 6. Необходимое условие экстремума функции двух переменных.
- 7. Достаточное условие экстремума ф–ции двух переменных.
- 10. Методы наименьших квадратов…
- Метод наименьших квадратов
- 11.Понятие неопределенного интеграла
- 17. Интегрирование рациональных функций.
- 18. Интегрирование рациональных функций.
- 20. Приложение определенного интеграла в геометрии и экономике.
- 22. Формула Ньютона-Лейбница.
- 23,24. Замена переменной и интегрирование по частям в определенном интеграле.
- 25.Площадь плоской фигуры.
- 26.Объем тела вращения.
- 28. Несобственные интегралы.
- Интегралы с бесконечными пределами.
- 29. Несобственные интегралы от неограниченной функции.
- 30. Приближенное вычисление опред. Интеграла
- 31. Дифференциальные уравнения (основные понятия).
- 32. Ду первого порядка. Задача и теорема Коши.
- 35.Ду с разделяющимися переменными.
- 37 Линейные ду первого порядка
- 39. Линейные нердн. Ур-ния 2-го порядка
- 40. Линейные неоднородные ду второго порядка с постоянными коэффициентами и спец-й правой частью.
- 41. Метод вариации произвольной постоянной
- 42.43. Понятие числового ряда и сумма ряда. Геометрический ряд. Некоторые свойства числовых рядов.
- 44. Необходимый признак сходимости.
- 45. Признак сравнения
- 46. Знакочередующиеся ряды. Признак Лейбница. Оценка остатка.
- 47. Знакопеременные ряды. Абсолютная и условная сходимость.
- 48. Понятие функционального ряда. Область сходимости.
- 49.Степенные ряды. Теорема Абеля
- 50.Свойства степенных рядов
- 51,52.. Разложение в степенные ряды. Ряд Тейлора и Маклорена.
- 53. Разложение функций sin X, cos X, ex в ряд Маклорена. Биномиальный ряд