logo search
vyshka шпоры

3. Непрерывность.

Опр.1: Функция z = f (M) называется непрерывной в точке М0, если существует предел функции в этой точке и он равен значению функции в этой точке, то есть если lim MM0 f(M) = f(M0).

Опр.2: Если в точке М000) бесконечно малым приращениям аргумента ∆х и ∆у соответствует бесконечно малое приращение функции ∆z, то функция непрерывна в точке М0. lim ∆x0. ∆y0 ∆z = 0