logo search
Высшая математика (Интегралы и дифференциальные уравнения) / 02 семестр / Разное / экзамен и дз15,18,23 вар / вроде биллеты / Экзаменационные билеты(с ответами)

1 Признак. Теорема. Пусть при выполнено неравенство .

Если интеграл сходится, то и интеграл сходится.

Если интеграл расходится, то и интеграл расходится.

Доказательство. Проинтегрируем неравенство на отрезке ,

. Так как обе функции на отрезке имеют только положительные значения, то интегралы от этих функций представляют собой возрастающие функции от верхнего предела b.

Если сходится (= I), то при любом b > a = I (I – конечное число).

Поэтому - монотонно возрастающая, ограниченная функция верхнего предела интегрирования b. Следовательно, по теореме Вейерштрасса этот интеграл как функция b имеет предел

, т.е. интеграл сходится.

Пусть теперь расходится. Если сходится, то по доказанному и сходится, противоречие. Теорема доказана.

Вообще-то, все было ясно из геометрического смысла определенного интеграла как площади криволинейной трапеции под графиком функции. Если значения одной функции больше, чем значения другой функции, то и соответствующая криволинейная трапеция имеет большую площадь. И если эта площадь конечна, то и меньшая площадь конечна. А если меньшая площадь бесконечна, то и большая площадь бесконечна. Но строгое доказательство не подведет, а «очевидное» иногда подводит.

2 признак сравнения. Теорема. Пусть при x>a . Если существует конечный предел , то интегралы , , сходятся или расходятся одновременно (если один сходится, то и другой сходится, если один расходится, то и другой расходится).

Доказательство. Из определения предела следует

.

Если интеграл сходится, то по первому признаку сравнения сходится интеграл , а, следовательно, сходится интеграл . Если интеграл сходится, то сходится интеграл , а, следовательно, по первому признаку сравнения сходится интеграл . Пусть интеграл расходится. Если интеграл сходится, то по первому признаку сравнения сходится интеграл , противоречие. Пусть интеграл расходится. Если интеграл сходится, то по первому признаку сравнения сходится интеграл , противоречие. Теорема доказана.

Эталонами служат обычно интегралы Дирихле или интегралы от показательной функции.

Пример. сходится по второму признаку сравнения, интеграл сравнения .

Пример. сходится по первому признаку, интеграл сравнения .

    1. Дифференциальное уравнение второго порядка, разрешённое относительно старшей производной, и задача Коши для него. Сведение этого уравнения к нормальной системе дифференциальных уравнений.

Дифференциальное уравнение n – ого порядка в общем виде записывается так:

.

Дифференциальное уравнение n – ого порядка в виде, разрешенном относительно старшей производной, выглядит так:

.

Решением дифференциального уравнения n – ого порядка называется функция , обращающая его в тождество.

Общим решением дифференциального уравнения n – ого порядка называется функция такая, что

  1. при любом наборе констант эта функция является решением,

  2. для любого набора начальных условий из области существования решения найдется набор констант , при котором функция удовлетворяет заданным начальным условиям, т.е. .

Заметим, что общее решение дифференциального уравнения n – ого порядка зависит ровно от n констант.

Частным решением дифференциального уравнения n – ого порядка называется какое-либо из решений, входящих в общее решение (при конкретном выборе констант).

Общим интегралом дифференциального уравнения n – ого порядка называется функция , сохраняющая свои значения на решениях дифференциального уравнения.

Интегральной кривой называется график частного решения.

Общее решение представляет собой совокупность интегральных кривых.

Обычно рассматривается одна из трех задач:

  1. Найти общее решение дифференциального уравнения n – ого порядка,

  2. Задача Коши – найти частное решение дифференциального уравнения n – ого порядка, удовлетворяющее заданным начальным условиям,

  3. Краевая задача – найти частное решение, удовлетворяющее заданным начальным условиям, одна часть которых задана в точке , а другая часть в точке.

Теорема Коши (существования и единственности решения задачи Коши для дифференциального уравнения n – ого порядка ).

Пусть функция и ее частные производные по переменным определены и непрерывны в некоторой области .

Тогда для любой внутренней точки существует единственное решение дифференциального уравнения, удовлетворяющее этим начальным условиям, т.е.

(через любую внутреннюю точку проходит единственная интегральная кривая).

Пример. Рассмотрим дифференциальное уравнение второго порядка . Область существования и единственности решения заполнена непересекающимися интегральными кривыми. Через любую точку проходит единственная интегральная кривая. Однако через «точку» проходит бесконечно много интегральных кривых, все они различаются значениями . Заметим, что в «точка» представляет собой прямую .

Теорема. Любое дифференциальное уравнение, разрешенное относительно старшей производной, можно свести к системе дифференциальных уравнений первого порядка.

Доказательство. Рассмотрим дифференциальное уравнение n-ого порядка

. Обозначим . Дифференциальное уравнение n-ого порядка удалось свести к системе n дифференциальных уравнений первого порядка

Применяя эту теорему, можно от канонического вида системы дифференциальных уравнений перейти к системе дифференциальных уравнений первого порядка - нормальному виду системы.

Получена система из дифференциальных уравнений первого порядка.

Удобнее нормальную систему дифференциальных уравнений (систему в нормальной форме) записывать в виде:

(покоординатная форма)

или в виде

, где (векторная форма).

Пример. Эти уравнения сводятся к нормальной системе

()

()

Оказывается, не только дифференциальное уравнение n- ого порядка сводится к системе n дифференциальных уравнений первого порядка – нормальной системе, но и нормальная система может быть сведена к одному дифференциальному уравнению.

  1. 22

    1. Доказать теорему о среднем значении интеграла.

Пусть функция непрерывна на отрезке . Тогда существует , что (или ).

Геометрически, смысл этого соотношения состоит в том, что площадь криволинейной трапеции равна площади прямоугольника с тем же основанием и высотой .

Доказательство. По второй теореме Вейерштрасса функция, непрерывная на отрезке, достигает на нем своей верхней и нижней грани. По теореме об оценке , откуда, деля на , получим

. По второй теореме Больцано – Коши функция, непрерывная на отрезке, принимает на нем все промежуточные значения между m и M. В частности, существует и такая точка , в которой функция принимает свое промежуточное значение , т.е.

    1. Доказать теорему о структуре общего решения линейного неоднородного дифференциального уравнения n-го порядка.

Общее решение линейного неоднородного уравнения есть сумма частного решения линейного неоднородного уравнения и общего решения однородного уравнения.

.

Доказательство. Покажем, что - общее решение неоднородного уравнения.

  1. - решение неоднородного уравнения как сумма решений однородного и неоднородного уравнений (теоремы о свойствах решений).

  2. Зададим произвольные начальные условия , . Вычислим начальные условия для выбранного частного решения неоднородного уравнения . Получим систему линейных алгебраических уравнений для определения констант:

.

.

.

.

Определитель этой системы – определитель Вронского. Он не равен нулю, так как решения линейно независимы. Поэтому константы определяются из этой системы по начальным условиям – правым частям системы единственным образом. Следовательно, - общее решение неоднородного уравнения.

  1. 23

    1. Определённый интеграл с переменным верхним пределом. Доказать теорему о производной от интеграла по его верхнему пределу.

Определенный интеграл представляет собой функцию пределов интегрирования. Это ясно даже из геометрической интерпретации интеграла как площади криволинейной трапеции. Изменяя пределы интегрирования, мы изменяем основание трапеции, изменяя тем самым ее площадь.

Рассмотрим интеграл как функцию верхнего предела интегрирования – интеграл с переменным верхним пределом . Переменная интегрирования по свойству 9 определенного интеграла – «немая переменная», ее можно заменить z или t или как- либо еще. Никакого отношения к верхнему пределу интегрирования она не имеет.

Теорема о производной интеграла по переменному верхнему пределу (основная теорема математического анализа)

Пусть функция непрерывна на отрезке , пусть . Тогда .

Доказательство. .

При доказательстве мы воспользовались теоремой о среднем и непрерывностью функции .

    1. Доказать теорему о структуре общего решения линейного однородного дифференциального уравнения n-го порядка.

Общее решение линейного однородного уравнения есть линейная комбинация решений фундаментальной системы.

.

Доказательство. Покажем, что линейная комбинация

является общим решениям (удовлетворяет пунктам определения общего решения)

  1. - решение линейного однородного уравнения как линейная комбинация решений.

  2. Зададим произвольные начальные условия , покажем, что можно подобрать константы такие, что удовлетворяет этим начальным условиям.

.

.

.

.........................................................................

.

Это – система линейных алгебраических уравнений относительно констант . Определитель этой системы – определитель Вронского. Он не равен нулю, так как решения линейно независимы. Поэтому константы определяются из этой системы по начальным условиям – правым частям системы единственным образом.

Следовательно, - общее решение.

Замечание. Определитель Вронского (как всякий определитель) представляет собой ориентированный n – мерный объем, натянутый на векторы решений фундаментальной системы решений.

  1. 24

    1. Вывести формулу для вычисления с помощью определённого интеграла объёма тела по площадям параллельных сечений.(!!!СМ. В ЛЕКЦИИ!!!)

Пусть требуется вычислить объем некоторого тела V по известным площадям сечений этого тела плоскостями, перпендикулярными прямой OX, проведенными через любую точку x отрезка [a, b] прямой OX.

Применим метод дифференциалов. Считая элементарный объем , над отрезком объемом прямого кругового цилиндра с площадью основания и высотой , получим . Интегрируя и применяя формулу Ньютона – Лейбница, получим

.

    1. Определения линейной зависимости и линейной независимости системы функций. Определитель Вронского и его свойства.