Тема 10. Предельные теоремы теории вероятностей
Рассмотрим несколько утверждений и теорем из большой группы, так называемых предельных теорем теории вероятностей, устанавливающих связь между теоретическими и экспериментальными характеристиками случайных величин при достаточно большом числе испытаний над ними. Они составляют основу математической статистики. Предельные теоремы условно делят на две группы.
Первая группа теорем, называемая законом больших чисел (ЗБЧ), устанавливает устойчивость средних значений: при большом числе испытаний их средний результат перестаёт быть случайным и может быть предсказан с достаточной точностью. Одна из таких теорем (ЗБЧ в форме Я.Бернулли, Т.6 п.7) нами уже была рассмотрена в качестве применения интегральной формулы Муавра-Лапласса. Этот закон теоретически обосновывает свойство устойчивости относительной частоты появления некоторого события раз прииспытаниях по схеме Бернулли.
Вторая группа теорем, называемая центральной предельной теоремой (ЦПТ) устанавливает при некоторых сравнительно широких условиях, суммарное поведение достаточно большого числа с.в. почти утрачивает случайный характер и становится закономерным, т.е. устанавливается условий, при которых закон распределения суммы большого числа случайных величин неограниченно приближается к нормальному закону.
Для практики важно знание условий, при выполнении которых совокупное действие многих случайных причин приводят к результату, почти не зависящему от случая, и позволяет предвидет ход событий. Эти условия и указываются в теоремах, носящих общее название закона больших чисел. К ним относятся теоремы Бернулли и Чебышева, Маркова и др.
В начале рассмотрим неравенство Чебышева, которое можно применять:
а) для грубой оценки вероятностей событий, связанных с случайными величинами, распределение которых неизвестно;
б) для доказательства ряда теорем ЗБЧ.
- Глава II
- 2. Дискретные и непрерывные случайные величины
- 3. Законы распределения дискретной случайной
- 4. Функция распределения случайной величины, функция
- 5. Производящая функция дискретной случайной величины
- 6. Плотность распределения вероятностей
- Тема 8. Числовые характеристики
- 1. Математическое ожидание случайной величины
- 2. Дисперсия случайной величины
- 3. Среднее квадратичное отклонение
- 4. Среднее квадратичное отклонение суммы
- 5. Одинаково распределённые взаимно
- 6. Мода и медиана, моменты случайных величин
- 7. Асимметрия и эксцесс, квантили
- 8. Производящая функция
- Тема 9. Основные законы распределения
- 1. Биномиальный закон распределения (Закон Бернулли)
- 2. Распределение Пуассона
- 3. Геометрическое распределение
- 4. Гипергеометрическое распределения
- 5. Равномерный закон распределения
- 2. .
- 6. Показательный закон распределения
- 7. Функция надёжности, показательный закон надёжности
- 8. Характеристическое свойство показательного
- 9. Нормальный закон распределения
- Тема 10. Предельные теоремы теории вероятностей
- 1. Неравенство Чебышева и Маркова
- 2. Теорема Чебышева (збч Чебышева)
- 3. Ещё раз о теореме Бернулли
- 4. Центральная предельная теорема
- 0,04, Т.Е..
- 5. Применение цпт
- 6. Примеры на применение нормального закона