logo search
Высшая математика (Интегралы и дифференциальные уравнения) / 02 семестр / Разное / экзамен и дз15,18,23 вар / вроде биллеты / Экзаменационные билеты(с ответами)

Пусть правая часть представляет собой квазиполином .

Ищем частное решение в виде . Здесь - полином n-ой степени, - полином, степень которого надо определить.

, .

а) Если - не корень характеристического уравнения, то , и многочлен надо выбирать той же степени, что и , т.е. степени n.

б) Если - простой корень характеристического уравнения, то . В этом случае многочлен надо выбирать той же степени, что и , т.е. степени n. Тогда степень многочлена надо выбирать равной n+1. Однако при дифференцировании производная свободного члена (постоянной) равна нулю, поэтому можно выбирать в виде =.

в) Если - кратный корень характеристического уравнения, то . В этом случае многочлен надо выбирать той же степени, что и , т.е. степени n. Тогда степень многочлена надо выбирать равной n+2. Однако при двукратном дифференцировании производная не только свободного члена равна нулю, но и производная линейного члена равна нулю. Поэтому можно выбирать в виде =.

Пример.

,

, - не корень характеристического уравнения, поэтому частное решение надо искать в том же виде, что и правая часть, . Подставляем в неоднородное уравнение с правой частью .

.

.Корень содержится один раз среди корней характеристического уравнения, поэтому частное решение ищется в виде .

Подставляем в неоднородное уравнение с правой частью .

.

Суммируя оба частных решения, получаем частное решение неоднородного уравнения для исходной правой части:

.

Общее решение неоднородного уравнения будет

.

2) Правая часть имеет вид

  1. Если не корни характеристического уравнения, то частное решение ищется в том виде, в котором задана правая часть:

,

где - полиномы степени m – максимальной из степеней полиномов .

б) Если - пара корней характеристического уравнения, то частное решение ищется в виде

,

Пример.

Пара корней = - пара корней характеристического уравнения.

Подставляем в неоднородное уравнение, получаем

, откуда

,

Рассмотрим неоднородное уравнение n-го порядка, покажем, как в нем применять метод подбора формы частного решения.

Здесь ситуация сложнее, так как в характеристическом уравнении n корней, действительные корни и комплексно сопряженные, простые и кратные корни.

  1. Пусть правая часть неоднородного уравнения имеет вид

  1. Если не является корнем характеристического уравнения, то частное решение неоднородного уравнения ищется в том же виде, что и правая часть .

  2. Если - корень характеристического уравнения r-ой кратности, то частное решение неоднородного уравнения ищется в виде .

  1. Пусть правая часть неоднородного уравнения имеет вид

а) Если пара комплексно сопряженных корней не является корнями характеристического уравнения, то частное решение неоднородного уравнения ищется в том же виде, что и правая часть

, где степень m многочленов – максимальная из степеней многочленов .

  1. Если пара комплексно сопряженных корней является корнями характеристического уравнения r-ой кратности, то частное решение неоднородного уравнения ищется в виде

.

Пример.

,

.

. содержится в корнях характеристического уравнения 2 раза, поэтому . Подставляя это частное решение в неоднородное уравнение с правой частью , получим

. Корни не содержатся в корнях характеристического уравнения, поэтому . Подставляя это частное решение в неоднородное уравнение с правой частью , получим .

..

+.

Пример.

.

содержится в корнях характеристического уравнения 3 раза, поэтому .

. Корни (пара корней) содержатся в корнях характеристического уравнения один раз, поэтому . Неопределенные коэффициенты определяются, как и выше, подстановкой в уравнение и сравнением коэффициентов при одинаковых степенях x, при sinx, cosx, xsinx, xcosx.

  1. 14

    1. Определение несобственного интеграла от неограниченной функции на конечном промежутке интегрирования. Сформулировать признаки сходимости таких интегралов.

    1. Нахождение общего решения линейного однородного дифференциального уравнения второго порядка при одном известном частном решении.

Рассмотрим частный случай уравнения второго порядка.

. Здесь формулу Остроградского – Лиувилля можно вывести проще. Рассмотрим - два частных решения

. , . Умножим первое уравнение на , а второе на и вычтем первое уравнение из второго.

.

Так как , то = .

Теперь уравнение можно переписать в виде . Решая это уравнение с разделяющимися переменными, получаем формулу Остроградского – Лиувилля

Формула для построения второго частного решения по известному

(построение фундаментальной системы).

.

Разделим обе части уравнения на

.

Отсюда . Нам надо найти частное решение, поэтому выберем С=1, C 1=0, получим .

  1. 15

    1. Доказать теорему об оценке определённого интеграла.

Пусть на отрезке и функция интегрируема на отрезке. Тогда

Доказательство. Интегрируя по свойству 7 неравенство , с учетом свойства 5 получаем требуемое утверждение.

Теорема об оценке полезна, когда интеграл вычислить трудно или вообще невозможно, но приблизительно оценить его необходимо. Это часто встречается в инженерной практике.

Пример. . Такой интеграл «не берется». Но на отрезке . Поэтому, учитывая четность подинтегральной функции, получим . Конечно, это – очень грубая оценка, более точную оценку можно получить, применяя методы численного интегрирования.

    1. Определения линейной зависимости и линейной независимости системы функций. Определитель Вронского. Теорема о вронскиане системы линейно независимых частных решений линейного однородного дифференциального уравнения n-го порядка.