4. Постановка задачи многокритериальной оптимизации
В более сложных ситуациях приходится иметь дело не с одной, а сразу с несколькими целевыми функциями. Так будет, например, когда какое-то явление, объект или процесс рассматривается с различных точек зрения и для формализации каждой точки зрения используется соответствующая функция. Если явление рассматривается в динамике, поэтапно и для оценки каждого этапа приходится вводить отдельную функцию, в этом случае также приходится учитывать несколько функциональных
показателей. Нижеследующее рассмотрение посвящено ситуации, когда имеется несколько числовых функций , , определенных на множестве .
В зависимости от содержания задачи выбора эти функции называют критериями оптимальности, критериями эффективности, целевыми функциями, показателями или критериями качества.
Проиллюстрируем введенные термины, рассмотрев задачу выбора наилучшего проектного решения. В этой задаче множество состоит из нескольких конкурсных проектов (например, строительства нового предприятия), а критериями оптимальности могут служить стоимость реализации проекта и величина прибыли , которую обеспечит данное проектное решение (т.е. построенное предприятие). Если ограничить рассмотрение данной задачи лишь одним критерием оптимальности, практическая значимость решения такой задачи окажется незначительной. В самом деле, при использовании только первого критерия будет выбран самый дешевый проект, но его реализация может привести к недопустимо малой прибыли. С другой стороны, на строительство самого прибыльного проекта, выбранного на основе второго критерия оптимальности, может просто не хватить имеющихся средств. Поэтому в данной задаче необходимо учитывать оба указанных критерия одновременно. Если же дополнительно стараться минимизировать нежелательные экологические последствия строительства и функционирования предприятия, то к двум указанным следует добавить еще один – третий критерий и т.д. Что касается ЛПР, осуществляющего выбор проекта, то в данной задаче таковым является глава администрации района, на территории которого будет построено предприятие, при условии, что это предприятие является государственным. Если же предприятие – частное, то в качестве ЛПР выступает глава соответствующей фирмы.
Указанные выше числовые функции (они могут быть названы частными критериями оптимизации) образуют векторный критерий
(1)
который принимает значения в -мерном арифметическом пространстве .
Это пространство называют критериальным пространством или пространством оценок, а значение векторного критерия при определенном именуют векторной оценкой возможного решения . Все векторные оценки образуют в пространстве множество возможных оценок.
Задачу выбора, содержащую множество возможных решений и векторный критерий , обычно называют многокритериальной задачей.
Предположим, что данные компоненты задачи выбора сформированы, четко описаны и зафиксированы. Опыт показывает, что в терминах критерия чаще всего не удается выразить всю гамму «пристрастий», «вкусов» и предпочтений данного ЛПР.
С помощью векторного критерия лишь намечаются определенные цели, которые нередко оказываются весьма противоречивыми.
Эти цели одновременно, как правило, достигнуты быть не могут, и поэтому речь может идти о компромиссном решении.
Задачу векторной оптимизации сформулируем следующим образом: найти
минимум целевых функций ,
максимум целевых функций
по поисковым переменным при наличии ограничений:
- на поисковые переменные:
, l=1,L; L-число поисковых переменных.
- на поисковые переменные в виде функциональных неравенств: , j=1,J; J - число функциональных неравенств.
- на поисковые переменные в виде функциональных равенств :
, i=1,I. I- число функциональных равенств.
Для сравнения критериев ,имеющих разный физический смысл (и естественно разные размерности),проведем нормализацию критериев в следующем виде:
для целевых функций ,
, i=1,……..m,
для целевых функций
i=m+1,…,M.
Эти функции сглаживают поверхность значений F и являются монотонными. Кроме того ,значения ,что обеспечивает инвариантность к масштабу изменения критериев.
Это обстоятельство позволяет сформулировать задачу многокритериальной оптимизации в следующем виде:
Найти минимум целевых функций
по поисковым переменным при наличии ограничений:
- на поисковые переменные:
, l=1,L; L-число поисковых переменных.
- на поисковые переменные в виде функциональных неравенств: , j=1,J; J- число функциональных неравенств.
- на поисковые переменные в виде функциональных равенств :
, i=1,I. I - число функциональных равенств.
(Вильфредо Парето (1848-1923) – итальянский социолог и экономист)
- Лекции по математическим основам принятия оптимальных технических решений
- 1.Лекции по курсу математические основы
- 1.4. Этапы процесса принятия решений
- 1.5. Классификация задач принятия решений
- 1.6. Основные принципы принятия решений.
- 2. Оптимизация систем.
- 2.1 Постановка задачи оптимизации
- 2.3.Понятие о свойствах целевой и ограничивающих функций
- 2.4.Определение линейной системы.
- 2.5. Формальные методы построения математических моделей. Выбор факторов и переменных состояния объекта исследования
- 2.6. Планирование эксперимента
- 2.6.1.Обработка экспериментальных данных.
- 2.6.2.Полный факторный эксперимент.
- 3. Классификация методов оптимизации
- 3.1.Классификация задач оптимизации.
- 3.2.Одномерная оптимизация
- 3.2.1. Метод сканирования
- 3.2.4. Метод параболической аппроксимации
- 3.3. Многомерная оптимизация. Концепция методов.
- 3.4. Многомерная безградиентная оптимизация
- 3.8. Многомерная градиентная оптимизация
- 3.9. Методы оптимизации 1-ого порядка
- 4. Постановка задачи многокритериальной оптимизации
- 1.6 Многопараметрическая оптимизация.
- 5.Обобщенная модель управления запасами
- 6. Классическая статическая модель
- 7. Задача экономичного размера заказа с разрывами цен
- 8.Многопродуктовая статическая модель управления запасами с ограничениями вместимости.
- 9. Динамическая модель управления запасами при отсутствии затрат на оформление.
- 10. Модель управления запасами с затратами на оформление заказа.
- 11.Понятие игры. Характеристика игры. Цена игры.
- 12. Классификация игр. Определение седловой точки.
- 13.Определение смешанной стратегии. Решение игры 2*2 в смешанных стратегиях.
- 14.Типы критериальных функций в играх с природой.
- 15.Классические критерии принятия решений в играх с природой.
- 16.Производные критерии принятия решений в играх с природой
- 17.Шкала. Определение. Виды.
- 18.Экспертные методы получения количественных оценок альтернатив.
- 19.Экспертные методы получения качественных оценок альтернатив.
- 20.Метод анализа иерархий. Этапы.
- 21.Метод анализа иерархий. Шкала.
- 22.Метод анализа иерархий. Калибровки.
- 23.Метод анализа иерархий. Вектора приоритетов.
- 24.Метод анализа иерархий. Оценка согласованности.