22.Метод анализа иерархий. Калибровки.
В исследованиях методов построения оценок было показано, что практически все методы построения предпочтений экспертов можно свести к последовательным оценкам парных сравнений.
При этом такие оценки удобно представить в виде матрицы парных сравнений следующего вида – рисунке 1, где элементы aij соответствуют степени предпочтения i–го элемента по отношению к j–му.
-
xj
xi
x1
x2
x3
...
xn
X1
a11
a12
a13
a1n
X2
a21
a22
a23
a2n
X3
a31
a32
a33
a3n
...
xn
an1
an2
an3
ann
Рисунок 1 – Матрица парных сравнений
При этом считается заданным либо множество вариантов, либо множество характеристик вариантов (элементов) X={x1,...,xn}, которые сравниваются попарно с точки зрения их предпочтительности, важности, желательности и т.п. Матрица парных сравнений отражает бинарное отношение предпочтения/безразличия на множестве X.
Такой матрице соответствует орграф G у которого дуга из вершины i в вершину j проводится в том случае, если элемент xi превосходит xj. Кроме того, дуга нагружается, иначе взвешивается соответствующим элементом aij. Такой граф не содержит кратных дуг.
Симметричные элементы матрицы парных сравнений aij и aij должны выбираться равными, если соответствующие объекты равноценны или несравнимы (далее мы не будем различать эти случаи), если же xi>xj, то aij должно быть больше aji. Кроме этих условий, на элементы матрицы A обычно накладываются дополнительные калибровочные органичения, однозначно связывающие попарно симметричные элементы aij и aji. Рассмотрим основные типы таких калибровок.
1) Калибровка простой структуры. (ПС):
ж 1, если xi>xj;
Ai,j, i<>j aij=н 0, если xi<xj; (1)
и 1/2, если xi~xj;
Диагональные элементы при этом обычно не фиксируются и могут быть любыми, но нередко дополнительно оговаривается, что Ai aii=1/2 (что позволяет считать ПС разновидностью упоминающейся далее турнирной калибровки).
Интерпретация: aij – индикатор факта превосходства одного объекта над другим или их равноценности (несравнимости).
2)Турнирная калибровка. (Т):
Ai,j aij>=0; aij+aji=c. (2)
Интерпретация: aij – число очков, набранных объектом (“игроком”) xi во всех сравнениях (“встречах”) с xj; число c=const при этом может интерпретироваться как количество таких сравнений (встреч). Нередко дополнительно постулируется целочисленность матрицы A.
3)Степенная калибровка. (С):
Ai,j aij>0; aij*aji=1. (3)
Интерпретация: объект xi превосходит в парном сравнении объект xj в aij раз.
4) Кососимметрическая калибровка. (К):
Ai,j aij+aji=0. (4)
Интепретация: объект xi превосходит в парном сравнении объект xj на aij.
5)Вероятностная калибровка. (В):
Ai,j 0<=aij<=1; aij+aji=1. (5)
Интерпретация: aij – вероятность превосходства xi над xj.
При использовании ограничений – калибровок, количество парных сравнений уменьшается с n2 до n(n–1)/2, что очень важно с точки зрения стоимости и времени проведения экспертизы.
Отметим, что в МАИ используется степенная калибровка матрицы парных сравнений.
- Лекции по математическим основам принятия оптимальных технических решений
- 1.Лекции по курсу математические основы
- 1.4. Этапы процесса принятия решений
- 1.5. Классификация задач принятия решений
- 1.6. Основные принципы принятия решений.
- 2. Оптимизация систем.
- 2.1 Постановка задачи оптимизации
- 2.3.Понятие о свойствах целевой и ограничивающих функций
- 2.4.Определение линейной системы.
- 2.5. Формальные методы построения математических моделей. Выбор факторов и переменных состояния объекта исследования
- 2.6. Планирование эксперимента
- 2.6.1.Обработка экспериментальных данных.
- 2.6.2.Полный факторный эксперимент.
- 3. Классификация методов оптимизации
- 3.1.Классификация задач оптимизации.
- 3.2.Одномерная оптимизация
- 3.2.1. Метод сканирования
- 3.2.4. Метод параболической аппроксимации
- 3.3. Многомерная оптимизация. Концепция методов.
- 3.4. Многомерная безградиентная оптимизация
- 3.8. Многомерная градиентная оптимизация
- 3.9. Методы оптимизации 1-ого порядка
- 4. Постановка задачи многокритериальной оптимизации
- 1.6 Многопараметрическая оптимизация.
- 5.Обобщенная модель управления запасами
- 6. Классическая статическая модель
- 7. Задача экономичного размера заказа с разрывами цен
- 8.Многопродуктовая статическая модель управления запасами с ограничениями вместимости.
- 9. Динамическая модель управления запасами при отсутствии затрат на оформление.
- 10. Модель управления запасами с затратами на оформление заказа.
- 11.Понятие игры. Характеристика игры. Цена игры.
- 12. Классификация игр. Определение седловой точки.
- 13.Определение смешанной стратегии. Решение игры 2*2 в смешанных стратегиях.
- 14.Типы критериальных функций в играх с природой.
- 15.Классические критерии принятия решений в играх с природой.
- 16.Производные критерии принятия решений в играх с природой
- 17.Шкала. Определение. Виды.
- 18.Экспертные методы получения количественных оценок альтернатив.
- 19.Экспертные методы получения качественных оценок альтернатив.
- 20.Метод анализа иерархий. Этапы.
- 21.Метод анализа иерархий. Шкала.
- 22.Метод анализа иерархий. Калибровки.
- 23.Метод анализа иерархий. Вектора приоритетов.
- 24.Метод анализа иерархий. Оценка согласованности.