logo
лекции по оптимизаци ТЕЛЕЖКИН

6. Классическая статическая модель

Модель управления запасами простейшего типа характеризуются постоянным во времени спросом, мгновенным пополнением запаса и отсутствием дефицита.

На рисунке показано изменение уровня запаса во времени. Предполагается, что интенсивность спроса (в единицу времени) равна . Наивысшего уровня запас достигается в момент поставки заказа размером у Уровень запаса достигает нуля спустя у/ единиц времени после получения заказа размером у.

Рис. .Изменение уровня запаса во времени

Чем меньше размер заказа у, тем чаще нужно размещать новые заказы. С другой стороны, с увеличением размера заказа уровень запаса повышается, но заказы размещаются реже. Так как затраты зависят от частоты размещения заказов и объема хранимого запаса, то величина у выбирается из условия обеспечения сбалансированности между двумя видами затрат. Это лежит в основе построения соответствующей модели управления запасами.

Пусть К – затраты на оформление заказа, имеющие место всякий раз при его размещении и затраты на хранение единицы заказа в единицу времени равны h. Следовательно, суммарные затраты в единицу времени TCU(y) как функцию от у можно представить в виде:

TCU(y) = . Продолжительность цикла движения заказа составляет t0=y/ и средний уровень запаса равен y/2.

Оптимальное значение у получается в результате минимизации TCU(y) по у. Таким образов, в предположении, что у – непрерывная переменная, имеем: ,откуда оптимальное значение размера заказа определяется выражением: .О птимальная стратегия модели предусматривает заказ у* единиц продукции через каждые t0*=y*/ единиц времени. Оптимальные затраты TCU(y*) составляют .

Для большинства реальных ситуаций существует (положительный) срок выполнения заказа (временное запаздывание) L от момента размещения заказа до его действительной поставки. Стратегия размещения заказов в приведенной модели должна определять точку возобновления заказа. С точки зрения анализа в условиях стабилизации системы срок выполнения заказа L можно всегда принять меньше продолжительности цикла t0* . Если это условие не выполняется, вычисляют эффективный срок выполнения заказов: ]