logo search
Bilety_Algebra

Вопрос 18. Прямая на плоскости. Общее урав прямой в вопросе 16. Взаимное расположение двух прямых

Возможны три случая расположения прямых в пространстве:

1) прямые пресекаются, т. е. имеют общую точку;

2) прямые параллельны, т. е. не имеют общей точки, но лежат в одной плоскости;

3) прямые скрещиваются, т. е. не лежат в одной плоскости, т. е. через них нельзя провести плоскость.

Угол между прямыми на плоскости

 

Определение. Если заданы две прямые y = k1 x + b1 , y = k 2x + b2 , то острый угол между этими прямыми будет определяться как

 

.

Две прямые параллельны, если k1 = k2 .

Две прямые перпендикулярны, если k1 = -1/ k2 .

 

Теорема. Прямые Ах + Ву + С = 0 и А 1 х + В1 у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = λА, В1 = λВ. Если еще и С1 = λС, то прямые совпадают.

Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.

Расстояние от точки до прямой

 

Теорема. Если задана точка М(х0 , у0 ), то расстояние до прямой Ах + Ву + С =0 определяется как

.

 

Доказательство. Пусть точка М 1(х 1, у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М1 :

 (1)

Координаты x1 и у1 могут быть найдены как решение системы уравнений:

Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой.

Если преобразовать первое уравнение системы к виду:

A(x – x 0 ) + B(y – y0 ) + Ax0 + By0 + C = 0,

то, решая, получим:

Подставляя эти выражения в уравнение (1), находим:

Теорема доказана.