Bilety_Algebra
Свойства обратной матрицы
, где обозначает определитель.
для любых двух обратимых матриц A и B.
где * T обозначает транспонированную матрицу.
для любого коэффициента .
Если необходимо решить систему линейных уравнений Ax = b, (b — ненулевой вектор) где x — искомый вектор, и если A − 1 существует, то x = A − 1b. В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.
Алгоритм:
1. Исследование матрицы на невыражденность
Обратной матрицы не существует.
2. Расставляем матричные алгебраические уравнения (??!)
3. Вычисляем присоед. (союзную) матрицу
4. Вычисление обратной матрицы
5. Проверка условий
А)
Б)
Тестовый пример Найти матрицу обратную матрице А
Решение 1.
; ;
3.
4. Пример нахождения:
Содержание
- Вопрос 1. Матрицей называется прямоугольная таблица чисел, содержащая m строк и n столбцов.
- Вопрос 2.
- I. Минор
- II. Алгебраические дополнения
- Вопрос 4. Определители любого(Высших??) порядка. Свойства определителей.
- Вопрос 5.
- Матрица 2х2
- С помощью матрицы алгебраических дополнений
- Пример решения неоднородной слау
- Вопрос 6.
- Вопрос 8.
- 2. Простейшие операции над векторами
- Вопрос 9.
- Вопрос 10.
- Вопрос 11.
- Вопрос 12.
- Вопрос 13.
- Свойства обратной матрицы
- Вопрос 14.
- Вопрос 15.
- Взаимное расположение двух плоскостей
- Вопрос 16.
- Вопрос 17. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка
- Вопрос 18. Прямая на плоскости. Общее урав прямой в вопросе 16. Взаимное расположение двух прямых
- Вопрос 19.20,21,22 (общее)
- Вопрос 23
- Вопрос 24.
- Бесконечно малая величина
- Бесконечно большая величина
- Вопрос 25.
- Вопрос 26.
- Вопрос 27.
- Вопрос 28. Свойства бесконечно малых функций
- Вопрос 29. Второй замечательный предел:
- Вопрос 30.
- Вопрос 31. (32)
- Вопрос 32. (33) Приращение функции f(X) в точке X — функция обычно обозначаемая Δxf от новой переменной Δx определяемая как
- Вопрос 33 (34). Применение дифференциала к приближенным вычислениям
- Вопрос 34 (35) Условия монотонности функции
- Вопрос 35 (36) Основные правила дифференцирования
- Вопрос 36 (37) Экстремум функции
- Вопрос 37 (38)
- Вопрос 38 (39) Непрерывность функций
- Вопрос 39 (40).
- Вопрос 40 (41).
- Вопрос 41 (42)
- Вопрос 42 (43)
- Вопрос 43 (44) Теорема Лагра́нжа в теории групп гласит:
- Вопрос 45 (46) Производные и дифференциалы высших порядков
- Вопрос 47 (48) 1.А)Найти одз и точки разрыва функции.