Вопрос 19.20,21,22 (общее)
ЛИНИИ ВТОРОГО ПОРЯДКА
плоские линии, прямоугольные координаты точек которых удовлетворяют алгебраическому уравнению 2-й степени. Среди линий второго порядка - эллипсы (в частности, окружности), гиперболы, параболы.
Общее уравнение линии второго порядка
Общее уравнение линии второго порядка имеет следующий вид:
А·х2 + 2·В·х·у + С·у2 + 2·D·x + 2·E·y + F = 0, | (12.1) |
где, коэффициенты A, B, C, D, E, F – любые не равные нулю одновременно числа и, кроме того, то есть А2 + В2 + С2 ≠ 0.
19й Окружность
Центр окружности – это геометрическое место точек в плоскости равностоящих от точки плоскости С(а,b).
Окружность задается следующим уравнением:
Где х,у – координаты произвольной точки окружности, R - радиус окружности.
Признак уравнения окружности
1. Отсутствует слагаемое с х,у
2. Равны Коэффициенты при х2 и у2
20й Эллипс
Эллипсом называется геометрическое место точек в плоскости, сумма расстояний каждой из которых от двух данных точек этой плоскости называется фокусами (постоянная величина).
Каноническое уравнение эллипса:
Х и у принадлежат эллипсу.
а – большая полуось эллипса
b – малая полуось эллипса
У эллипса 2 оси симметрии ОХ и ОУ. Оси симметрии эллипса – его оси, точка их пересечения – центр эллипса. Та ось на которой расположены фокусы, называется фокальной осью. Точка пересечения эллипса с осями – вершина эллипса.
Коэффициент сжатия (растяжения): ε = с/а – эксцентриситет (характеризует форму эллипса), чем он меньше, тем меньше вытянут эллипс вдоль фокальной оси.
Если центры эллипса находятся не в центре С(α, β)
21й Гипербола
Гиперболой называется геометрическое место точек в плоскости, абсолютная величина разности расстояний, каждое из которых от двух данных точек этой плоскости, называемых фокусами есть величина постоянная , отличная от ноля.
Каноническое уравнение гиперболы
Гипербола имеет 2 оси симметрии:
а – действительная полуось симметрии
b – мнимая полуось симметрии
Ассимптоты гиперболы:
22й Парабола
Параболой называется геометрическое место точек в плоскости, равноудаленных от данной точки F, называемой фокусом и данной прямой, называемой директрисой.
Каноническое уравнение параболы:
У2=2рх, где р – расстояние от фокуса до директрисы (параметр параболы)
Если вершина параболы С (α, β), то уравнение параболы (у-β)2=2р(х-α)
Если фокальную ось принять за ось ординат, то уравнение параболы примет вид: х2=2qу
http://matematik-master.ru/index.php/2011-10-24-06-39-28/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F/58-%D0%BE%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F-%D0%B8-%D1%84%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D1%8B/444-%D0%BA%D1%80%D0%B8%D0%B2%D0%B0%D1%8F-%D0%B2%D1%82%D0%BE%D1%80%D0%BE%D0%B3%D0%BE-%D0%BF%D0%BE%D1%80%D1%8F%D0%B4%D0%BA%D0%B0#1
- Вопрос 1. Матрицей называется прямоугольная таблица чисел, содержащая m строк и n столбцов.
- Вопрос 2.
- I. Минор
- II. Алгебраические дополнения
- Вопрос 4. Определители любого(Высших??) порядка. Свойства определителей.
- Вопрос 5.
- Матрица 2х2
- С помощью матрицы алгебраических дополнений
- Пример решения неоднородной слау
- Вопрос 6.
- Вопрос 8.
- 2. Простейшие операции над векторами
- Вопрос 9.
- Вопрос 10.
- Вопрос 11.
- Вопрос 12.
- Вопрос 13.
- Свойства обратной матрицы
- Вопрос 14.
- Вопрос 15.
- Взаимное расположение двух плоскостей
- Вопрос 16.
- Вопрос 17. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка
- Вопрос 18. Прямая на плоскости. Общее урав прямой в вопросе 16. Взаимное расположение двух прямых
- Вопрос 19.20,21,22 (общее)
- Вопрос 23
- Вопрос 24.
- Бесконечно малая величина
- Бесконечно большая величина
- Вопрос 25.
- Вопрос 26.
- Вопрос 27.
- Вопрос 28. Свойства бесконечно малых функций
- Вопрос 29. Второй замечательный предел:
- Вопрос 30.
- Вопрос 31. (32)
- Вопрос 32. (33) Приращение функции f(X) в точке X — функция обычно обозначаемая Δxf от новой переменной Δx определяемая как
- Вопрос 33 (34). Применение дифференциала к приближенным вычислениям
- Вопрос 34 (35) Условия монотонности функции
- Вопрос 35 (36) Основные правила дифференцирования
- Вопрос 36 (37) Экстремум функции
- Вопрос 37 (38)
- Вопрос 38 (39) Непрерывность функций
- Вопрос 39 (40).
- Вопрос 40 (41).
- Вопрос 41 (42)
- Вопрос 42 (43)
- Вопрос 43 (44) Теорема Лагра́нжа в теории групп гласит:
- Вопрос 45 (46) Производные и дифференциалы высших порядков
- Вопрос 47 (48) 1.А)Найти одз и точки разрыва функции.