Вопрос 27.
ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ
В БЕСКОНЕЧНО УДАЛЕННОЙ ТОЧКЕ
До сих пор мы рассматривали пределы для случая, когда переменная величина x стремилась к определенному постоянному числу.
Будем говорить, что переменная x стремится к бесконечности, если для каждого заранее заданного положительного числа M (оно может быть сколь угодно большим) можно указать такое значение х=х0, начиная с которого, все последующие значения переменной будут удовлетворять неравенству |x|>M.
Например, пусть переменная х принимает значения x1= –1, x2=2, x3= –3, …, xn=(–1)nn, … Ясно, что это бесконечно большая переменная величина, так как при всех M > 0 все значения переменной, начиная с некоторого, по абсолютной величине будут больше M.
Переменная величина x → +∞, если при произвольном M > 0 все последующие значения переменной, начиная с некоторого, удовлетворяют неравенству x > M.
Аналогично, x → – ∞, если при любом M > 0 x < -M.
Будем говорить, что функция f(x) стремится к пределу b при x → ∞, если для произвольного малого положительного числа ε можно указать такое положительное число M, что для всех значений x, удовлетворяющих неравенству |x|>M, выполняется неравенство |f(x) - b| < ε.
Обозначают .
http://examen.nx0.ru/index.php?option=com_content&view=article&id=467:2011-02-15-14-47-19&catid=13:math&Itemid=23 БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ
Ранее мы рассмотрели случаи, когда функция f(x) стремилась к некоторому конечному пределу b при x → a или x → ∞.
Рассмотрим теперь случай, когда функция y=f(x) стремится к бесконечности при некотором способе изменения аргумента.
Функция f(x) стремится к бесконечности при x → a, т.е. является бесконечно большой величиной, если для любого числа М, как бы велико оно ни было, можно найти такое δ > 0, что для всех значений х≠a, удовлетворяющих условию |x-a| < δ, имеет место неравенство |f(x)| > M.
Если f(x) стремится к бесконечности при x→a, то пишут или f(x)→∞ при x→a.
Сформулируйте аналогичное определение для случая, когда x→∞.
Если f(x) стремится к бесконечности при x→a и при этом принимает только положительные или только отрицательные значения, соответственно пишут или .
БЕСКОНЕЧНО МАЛЫЕ ФУНКЦИИ И ИХ ОСНОВНЫЕ СВОЙСТВА
Функция y=f(x) называется бесконечно малой при x>a или при x>?, еслиили , т.е. бесконечно малая функция - это функция, предел которой в данной точке равен нулю.
Примеры.
1. Функция f(x)=(x-1)2 является бесконечно малой при x>1, так как(см. рис.).
2. Функция f(x) = tgx - бесконечно малая при x>0.
3. f(x) = ln (1+x)- бесконечно малая при x>0.
4. f(x) = 1/x- бесконечно малая при x>?.
- Вопрос 1. Матрицей называется прямоугольная таблица чисел, содержащая m строк и n столбцов.
- Вопрос 2.
- I. Минор
- II. Алгебраические дополнения
- Вопрос 4. Определители любого(Высших??) порядка. Свойства определителей.
- Вопрос 5.
- Матрица 2х2
- С помощью матрицы алгебраических дополнений
- Пример решения неоднородной слау
- Вопрос 6.
- Вопрос 8.
- 2. Простейшие операции над векторами
- Вопрос 9.
- Вопрос 10.
- Вопрос 11.
- Вопрос 12.
- Вопрос 13.
- Свойства обратной матрицы
- Вопрос 14.
- Вопрос 15.
- Взаимное расположение двух плоскостей
- Вопрос 16.
- Вопрос 17. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка
- Вопрос 18. Прямая на плоскости. Общее урав прямой в вопросе 16. Взаимное расположение двух прямых
- Вопрос 19.20,21,22 (общее)
- Вопрос 23
- Вопрос 24.
- Бесконечно малая величина
- Бесконечно большая величина
- Вопрос 25.
- Вопрос 26.
- Вопрос 27.
- Вопрос 28. Свойства бесконечно малых функций
- Вопрос 29. Второй замечательный предел:
- Вопрос 30.
- Вопрос 31. (32)
- Вопрос 32. (33) Приращение функции f(X) в точке X — функция обычно обозначаемая Δxf от новой переменной Δx определяемая как
- Вопрос 33 (34). Применение дифференциала к приближенным вычислениям
- Вопрос 34 (35) Условия монотонности функции
- Вопрос 35 (36) Основные правила дифференцирования
- Вопрос 36 (37) Экстремум функции
- Вопрос 37 (38)
- Вопрос 38 (39) Непрерывность функций
- Вопрос 39 (40).
- Вопрос 40 (41).
- Вопрос 41 (42)
- Вопрос 42 (43)
- Вопрос 43 (44) Теорема Лагра́нжа в теории групп гласит:
- Вопрос 45 (46) Производные и дифференциалы высших порядков
- Вопрос 47 (48) 1.А)Найти одз и точки разрыва функции.