Вопрос 39 (40).
Функция y=f(x) называется непрерывной на множестве х большое, если она непрерывна в каждой точке этого множества (????!!!!????) Свойства функций, непрерывных на отрезке
Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897)- немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [a, b] выполняется условие –M f(x) M.
Доказательство этого свойства основано на том, что функция, непрерывная в точке х0, ограничена в некоторой ее окрестности, а если разбивать отрезок [a, b] на бесконечное количество отрезков, которые “стягиваются” к точке х0, то образуется некоторая окрестность точки х0.
Свойство 2: Функция, непрерывная на отрезке [a, b], принимает на нем наибольшее и наименьшее значения.
Т.е. существуют такие значения х1 и х2, что f(x1) = m, f(x2) = M, причем
m f(x) M
Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например – f(x) = sinx).
Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке.
Свойство 3: (Вторая теорема Больцано – Коши). Функция, непрерывная на отрезке [a, b], принимает на этом отрезке все значения между двумя произвольными величинами.
Свойство 4: Если функция f(x) непрерывна в точке х = х0, то существует некоторая окрестность точки х0, в которой функция сохраняет знак.
Свойство 5: (Первая теорема Больцано (1781-1848) – Коши). Если функция f(x)- непрерывная на отрезке [a, b] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x) = 0.
Т.е. если sign(f(a)) sign(f(b)), то х0: f(x0) = 0.
Определение. Функция f(x) называется равномерно непрерывной на отрезке [a, b], если для любого >0 существует >0 такое, что для любых точек х1[a,b] и x2[a,b] таких, что
х2 – х1<
верно неравенство f(x2) – f(x1) <
Отличие равномерной непрерывности от “обычной” в том, что для любого существует свое , не зависящее от х, а при “обычной” непрерывности зависит от и х.
Свойство 6: Теорема Кантора (Кантор Георг (1845-1918)- немецкий математик). Функция, непрерывная на отрезке, равномерно непрерывна на нем.
(Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.)
- Вопрос 1. Матрицей называется прямоугольная таблица чисел, содержащая m строк и n столбцов.
- Вопрос 2.
- I. Минор
- II. Алгебраические дополнения
- Вопрос 4. Определители любого(Высших??) порядка. Свойства определителей.
- Вопрос 5.
- Матрица 2х2
- С помощью матрицы алгебраических дополнений
- Пример решения неоднородной слау
- Вопрос 6.
- Вопрос 8.
- 2. Простейшие операции над векторами
- Вопрос 9.
- Вопрос 10.
- Вопрос 11.
- Вопрос 12.
- Вопрос 13.
- Свойства обратной матрицы
- Вопрос 14.
- Вопрос 15.
- Взаимное расположение двух плоскостей
- Вопрос 16.
- Вопрос 17. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка
- Вопрос 18. Прямая на плоскости. Общее урав прямой в вопросе 16. Взаимное расположение двух прямых
- Вопрос 19.20,21,22 (общее)
- Вопрос 23
- Вопрос 24.
- Бесконечно малая величина
- Бесконечно большая величина
- Вопрос 25.
- Вопрос 26.
- Вопрос 27.
- Вопрос 28. Свойства бесконечно малых функций
- Вопрос 29. Второй замечательный предел:
- Вопрос 30.
- Вопрос 31. (32)
- Вопрос 32. (33) Приращение функции f(X) в точке X — функция обычно обозначаемая Δxf от новой переменной Δx определяемая как
- Вопрос 33 (34). Применение дифференциала к приближенным вычислениям
- Вопрос 34 (35) Условия монотонности функции
- Вопрос 35 (36) Основные правила дифференцирования
- Вопрос 36 (37) Экстремум функции
- Вопрос 37 (38)
- Вопрос 38 (39) Непрерывность функций
- Вопрос 39 (40).
- Вопрос 40 (41).
- Вопрос 41 (42)
- Вопрос 42 (43)
- Вопрос 43 (44) Теорема Лагра́нжа в теории групп гласит:
- Вопрос 45 (46) Производные и дифференциалы высших порядков
- Вопрос 47 (48) 1.А)Найти одз и точки разрыва функции.