logo search
vyshka шпоры

30. Приближенное вычисление опред. Интеграла

Если сущ-ет конечный независящий от способа разбиения отрезка [a, b] на частичные отрезки и от выбора точек ξi соответствующих частичных отрезков [xi-1; xi] предел интегральной суммы (1) при , то этот предел называется определенным интегралом от функции f(x) на пром-ке от a до b и обозн-ся (2)В этом случае ф-ция называется интегрируемой на отрезке [a, b], a – нижний предел интегрирования, b – верхний предел интегрирования. Геометрический смысл опред-ого интеграла. Пусть f(x)≥0 на отрезке [a, b]

y=f(x) x=a

x=b y=0

Площадь ступенчатой фигуры:

σ = f(ξ1) ∆x1 + f(ξ2) ∆x2 +…+f(ξn) ∆xn =

равна интегральной сумме для ф-ции f(x) на отрезке [a, b]. Если сущ-ет ,то его прин-юза площадь криволинейной трапеции