logo
Аналитическая теория чисел. L-функция Дирихле

Введение

Теория L-функций Дирихле развилась в одно из важнейших вспомогательных средств аналитической теории чисел. Большую роль в приложениях играет исследование нулей L-функций Дирихле.

В аналитической теории чисел L-функция Дирихле играет такую же роль, как и ж-функция при решении задач теории чисел, а именно задач, связанных с распределением простых чисел в арифметических прогрессиях и в задачах, связанных с оценками арифметических сумм.

Предметом исследования данной курсовой работы является распределение значений L-функций Дирихле, результаты Гурвица о выводе функционального уравнения для L-функции Дирихле и как следствие, показать, что L-функции Дирихле в критической полосе имеют бесконечное число нулей. Эти функции ввел в 1837 г. Густав Дирихле при исследовании вопроса о распределении простых чисел в арифметических прогрессиях. Основные результаты были получены в 1922 году А. Гурвицем.

В данной курсовой работе изложение материала отражает основные свойства L-функций Дирихле и соответствует результатам, полеченным Гурвицем касающимся L-функций Дирихле.

В заключении данной работы приводится гипотеза о распределении нулей дзета-функции, сформулированная Бернхардом Риманом в 1859 году. Гипотеза Римана входит в список семи «проблем тысячелетия».