Аналитическая теория чисел. L-функция Дирихле
§6. Обобщенная гипотеза Римана
Функция ж(s) определена для всех комплексных s?1 , и имеет нули для отрицательных целых s = --2, --4, --6 .... Из функционального уравнения
,
и явного выражения
при Re s >1 следует, что все остальные нули, т.е. нетривиальные, расположены в полосе 0?Re s ? 1 симметрично относительно критической линии . Гипотеза Римана утверждает, что:
Все нетривиальные нули дзета-функции имеют действительную часть, равную .
Обобщённая гипотеза Римана состоит из того же самого утверждения для обобщений дзета-функций, то есть L-функций Дирихле
Содержание
- Введение
- §1. Характеры Дирихле и L-функции Дирихле
- §2. Функция и(x ,ч), её функциональное уравнение
- §3. Аналитическое продолжение L-функции Дирихле на комплексную плоскость
- §4. Функциональное уравнение для L-функции Дирихле. Тривиальные нули L-функции Дирихле
- §5. Нетривиальные нули L-функции Дирихле
- 5.1 Теорема Вейерштрасса о разложении в произведение целых функций
- 5.2 О бесконечности целых нетривиальных нулей L-функции Дирихле
- §6. Обобщенная гипотеза Римана
- Библиографический список
Похожие материалы
- Теорема Дирихле.
- § 6. Сходимость тригонометрического ряда Фурье. Теорема Дирихле
- 6. Теорема Дирихле
- Условия и ряд Дирихле
- Ряд Фурье по тригонометрической системе функций . Теорема Дирихле
- 1.3. Классическое понятие функции и его трансформация (19 - 20 века)
- Функция Грина задачи Дирихле.
- 11. Необходимый признак интегрируемости функции по Риману. Функция Дирихле.