logo
*-Алгебры и их применение

1.5. Гомоморфизм и изоморфизм алгебр

Определение 1.7. Пусть А и В - две *-алгебры. Назовем гомоморфизмом (*-гомоморфизмом) А в В такое отображение f множества А в В, что

f (x + y) = f (x) + f (y),

f (бx) = б f (x),

f (xy) = f (x) f (y),

f (x*) = f (x)*

для любых х,yА, бС. Если отображение f биективно, то f называют изоморфизмом (*-изоморфизмом).

Определение 1.8. Совокупность I элементов алгебры А называется левым идеалом, если:

(i) I ? A;

(ii) Из х, yI следует x + y I;

(iii) Из хI, а бА следует б хI.

Если I = А, то I называют несобственным идеалом.

Аналогично определяется и правый идеал. Идеал, являющийся одновременно и левым, и правым, называется двусторонним.

Всякий идеал автоматически оказывается алгеброй.

Пусть I - двусторонний идеал в алгебре А. Два элемента х, y из А назовем эквивалентными относительно идеала I, если х-yI. Тогда вся алгебра А разбивается на классы эквивалентных между собой элементов. Обозначим через А совокупность всех этих классов. Введем в А1 операции сложения, умножения на число и умножения, производя эти действия над представителями классов. Так как I - двусторонний идеал, то результат операций не зависит от выбора этих представителей.

Следовательно, А1 становится алгеброй. Эта алгебра называется фактор-алгеброй алгебры А по идеалу I и обозначается A/I.

*-гомоморфизм алгебр описывается при помощи так называемых самосопряженных двусторонних идеалов.

Определение 1.9. Идеал I (левый, правый или двусторонний) называется самосопряженным, если из хI следует х*I.

Самосопряженный идеал автоматически является двусторонним. Действительно, отображение х > х* переводит левый идеал в правый и правый идеал в левый; если поэтому отображение х > х* переводит I в I, то I есть одновременно и левый и правый идеал.

В фактор-алгебре A/I по самосопряженному двустороннему идеалу I можно определить инволюцию следующим образом. Если х-yI, то х*-y*I. Поэтому при переходе от х к х* каждый класс вычетов х по идеалу I переходит в некоторый другой класс вычетов по I. Все условия из определения 1.2. выполнены; следовательно, A/I есть *-алгебра.

Если х > хґ есть *-гомоморфизм А на Аґ, то полный прообраз I нуля (то есть ядро данного гомоморфизма) есть самосопряженный двусторонний идеал в А. Фактор-алгебра A/I *-изоморфна *-алгебре Аґ.

Обратно, отображение х > [х] каждого элемента хА в содержащий его класс вычетов по I есть *-гомоморфизм алгебра А на A/I.

§ 2. Представления