logo
*-Алгебры и их применение

2.3. Неприводимые представления.

Определение 2.5. Представление называется неприводимым, если в пространстве Н не существует инвариантного подпространства, отличного от {0} и всего Н.

Согласно теореме 2.2. это означает, что всякий оператор проектирования, перестановочный со всеми операторами представления, равен 0 или 1.

Всякое представление в одномерном пространстве неприводимо.

Теорема 2.5. Представление р в пространстве Н неприводимо тогда и только тогда, когда всякий отличный от нуля вектор пространства Н есть циклический вектор этого представления.

Доказательство. Пусть представление р неприводимо. При fН, f ? 0, подпространство, натянутое на векторы р(х)f , хА, есть инвариантное подпространство; в силу неприводимости представления оно совпадает с {0} или Н. Но первый случай невозможен, ибо тогда одномерное пространство

{б f | б C} инвариантно и потому совпадает с Н, то есть р(х)=0 в Н. Во втором же случае f есть циклический вектор.

Обратно, если представление р приводимо и К - отличное от {0} и Н инвариантное подпространство в Н, то никакой вектор f из К не будет циклическим для представления р в Н.

Теорема 2.6. (И.Шур) Представление р неприводимо тогда и только тогда, когда коммутант р (А) в L(H) сводится к скалярам (то есть операторам кратным единичному).

Доказательство. Пусть представление р неприводимо и пусть ограни-
ченный оператор В перестановочен со всеми операторами р(х). Предположим сначала, что В - эрмитов оператор; обозначим через E(л) спектральные проекторы оператора В. Тогда при любом л оператор E(л) перестановочен со всеми операторами р(х) ; в виду неприводимости представления E(л) =0 или E(л) =1, так как (E(л) f, f) не убывает при возрастании л, то отсюда следует, что существует л0 такое, что E(л) =0 при л<л0 и E(л) =1 при л>л0 . Отсюда

В=л dE(л) = л0 1.

Пусть теперь В - произвольный ограниченный оператор, переста-
новочный со всеми операторами р(х). Тогда В* также перестановочен со всеми операторами р(х). Действительно,

В*р(х) = (р(х*)В)* = (Вр(х*))* = р(х)В*

Поэтому эрмитовы операторы В1=, В2= также перестановочны со всеми операторами р(х) и, следовательно, кратны единице. Но тогда и оператор В = В1+iВ2 кратен единице, то есть В - скаляр.

Обратно, пусть всякий ограниченный оператор, перестановочный со всеми операторами р(х), кратен единице. Тогда, в частности, всякий оператор проектирования, перестановочный со всеми операторами р(х) кратен единице. Но оператор проектирования может быть кратным единице только тогда, когда он равен 0 или 1. Следовательно, представление неприводимо.

Определение 2.6 Всякий линейный оператор Т : Н ? Нґ такой, что Тр(х)=рґ(х)Т для любого хА, называется оператором сплетающим р и рґ.

Пусть Т : Н ? Нґ - оператор, сплетающий р и рґ. Тогда Т* : Нґ ? Н является оператором, сплетающим рґ и р, так как

Т* рґ(х) = (рґ(х)Т)* = (Тр(х*))* = р(х)Т*

Отсюда получаем, что

Т* Тр(х)=Т* рґ(х)Т= р(х)Т*Т (2.1.)

Поэтому |T| = (T*T)1/2 перестановочен с р(А). Пусть Т = U|T| - полярное разложение Т. Тогда для любого хА

Uр(х)|T| = U|T| р(х)= Тр(х)= рґ(х)Т=рґ(х)U|T| (2.2.)

Если KerT={0}, то |T| (Н) всюду плотно в Н и из (2.2.) следует

Uр(х) = рґ(х)U (2.3.)

Если, кроме того, = Нґ, то есть если KerT*={0}, то U является изоморфизмом Н и Нґ и (2.3.) доказывает что р и рґ эквивалентны.

Пусть р и рґ - неприводимые представления *-алгебры А в гильбертовых пространствах Н и Нґ соответственно. Допустим, что существует ненулевой сплетающий оператор Т : Н ? Нґ. Тогда из (2.1.) и теоремы 2.6. следует, что Т*Т и ТТ* - скалярны (?0) и р, рґ эквивалентны.