2.1. Непараметрическая оценка плотности распределения вероятностей Розенблатта–Парзена
Функцией распределения вещественной случайной величины T называется вероятность того, что эта величина принимает меньшее значение, чем аргумент функции:
. | (2.1) |
Функция распределения возрастает на всей области определения и принимает значения от 0 до 1 (рис. 2.1).
Рис. 2.1. Функция распределения вероятности
Плотностью распределения случайной величины называется первая производная от функции распределения (рис. 2.2):
. | (2.2) |
Плотность распределения удовлетворяет следующему свойству:
. | (2.3) |
Пусть задана выборка случайной величины T: . Если использовать эту выборку, то можно получить следующий вариант оценки функции распределения:
, . | (2.4) |
Рис. 2.2. Плотность распределения вероятности
Предположим, что выборочные данные будут равновероятными. Тогда оценка функции распределения может быть представлена как оценка функции распределения дискретной случайной величины (рис. 2.3):
. . . . . . . . | (2.5) |
Рис. 2.3. Оценка функции распределения
дискретной случайной величины (S = 4)
Единичной ступенчатой функцией Хевисайда (рис. 2.4) назовем функцию
| (2.6) |
Дельта-функцией Дирака (см. рис. 2.4) называется первая производная от функции Хевисайда:
. | (2.7) |
Дельта-функция удовлетворяет следующим свойствам:
, , |
где ; – произвольная функция, принимающая конечные значения.
Применяя операцию дифференцирования к дискретной функции распределения, получим следующую оценку плотности распределения (рис. 2.5):
. | (2.8) |
|
|
Рис. 2.4. Функции Дирака и Хевисайда
| Рис. 2.5. Несостоятельная оценка плотности распределения |
Приведенная выше оценка плотности распределения является несмещенной, но в то же время несостоятельной (см. приложение). Для того чтобы сгенерировать состоятельную оценку и обеспечить ее практическую применимость, необходима ее модификация. Модификация заключается в размытии входящих в оценку дельта-функций (рис. 2.6). В результате модификации получаем ядерную, или колоколообразную функцию :
, | (2.9) |
где – параметр, определяющий степень размытости ядерной функции, т. е. гладкость оценки. Параметр удовлетворяет следующим условиям:
, , . |
|
О Рис. 2.6. Трансформация ядерной функ- ции в зависимости от параметра
,
.
В качестве ядерных могут быть использованы следующие функции:
– экспоненциальная функция (функция Гаусса):
;
– параболическая функция:
– прямоугольная функция:
Окончательно получим непараметрическую оценку плотности распределения:
. | (2.10) |
Первым подобную оценку ввел М. Розенблатт в 1957 г., а Е. Парзен в 1962 г. ее уточнил. Эта оценка положила начало непараметрической теории, которая применяется для решения задач, связанных с обработкой статистических данных, идентификации, управления и распознавания образов. Оценка плотности – асимптотически несмещенная и сходится в среднеквадратическом (см. приложение).
Пусть дана многомерная случайная величина T, т. е. задан вектор размерности k: , тогда оценкой плотности будет следующая статистика:
Параметры могут быть различными для разных компонентов многомерной случайной величины. Пусть – вектор размерности k:
.
Тогда оценка плотности примет вид
. | (2.11) |
Оценка плотности вероятности входит в выражения для вычисления всевозможных характеристик случайных величин. Рассмотрим ее применение в задачах регрессионного анализа.
- Е. Д. Агафонов, о. В. Шестернёва Математическое моделирование линейных динамических систем
- © Сибирский федеральный университет, 2011
- Оглавление
- Предисловие
- Глава 1 Параметрические регрессионные модели
- 1.1. Линейная регрессия
- 1.2. Метод наименьших квадратов. Критерий метода наименьших квадратов
- 1.3. Идентификация линейных по параметрам моделей с использованием метода наименьших квадратов
- 1.4. Линейный метод наименьших квадратов с использованием ортогональных полиномов
- 1.5. Рекуррентный метод наименьших квадратов
- 1.6. Линейная аппроксимация метода наименьших квадратов
- 1.7. Методы максимального правдоподобия и максимума апостериорной вероятности
- 1.8. Метод инструментальных переменных
- 1.9. Реализация метода наименьших квадратов в пакете matlab
- 1.10. Метод стохастической аппроксимации
- Контрольные задания
- Глава 2 Непараметрические регрессионные модели
- 2.1. Непараметрическая оценка плотности распределения вероятностей Розенблатта–Парзена
- 2.2. Непараметрическая оценка регрессии Надарая–Ватсона
- Контрольные задания
- Глава 3 модели линейных динамических систем
- 3.1. Способы описания линейных динамических систем
- 3.2. Модель динамической системы в виде представления Фурье (модель сигнала)
- 3.3. Частотный метод описания линейных динамических систем
- 3.4. Определение передаточной функции линейных динамических систем на основе спектральных плотностей
- Контрольные задания
- Глава 4 непараметрические модели линейных динамических систем
- 4.1. Постановка задачи идентификации линейных динамических систем
- 4.2. Математическое описание и построение непараметрической модели линейных динамических систем
- 4.3. Оптимизация непараметрических моделей линейных динамических систем
- 4.4. Непараметрические модели линейных динамических систем на основе уравнения Винера–Хопфа
- Контрольные задания
- Заключение
- Библиографический список
- Англо-русский словарь терминов
- Сходимость статистических оценок
- 660041, Г. Красноярск, пр. Свободный, 79.
- 660041, Г. Красноярск, пр. Свободный, 82а.