Деление многочленов. Частное и остаток
Правило деления многочлена называется алгоритмом Евклида. Этот алгоритм состоит в следующем. Предположим степени многочлена P(x) равна n, степень многочлена Q(x) равна m, m≤n, и P(x) = a0xn + a1xn-1+ …+ an , Q(x) = b0xm + b1xm-1 + …+ bm.
Результат деления старших степеней этих многочленов есть a0/b0* xn-m и, очевидно, разность многочленов P(x)- a0/b0* xn-mQ(x) имеет степень меньшую, чем n, т.е. P(x) = c0xn-mQ(x)+P1(x), где с0= a0/b0 и многочлен P1(x) имеет степень, меньшую степени многочлена Р(х). Аналогично, если m≤n-1, то многочлен P1(x) можно представить в виде P1(x)=с1хn-m-1Q(x) + P2(x), где многочлен P2(x) имеет степень, меньшую степени многочлена P1, и т.д. Соединив эти действия, мы представим многочлен P(x) в виде P(x) = (c0xn-m+ c1xn-m-1 + … + cn-m)Q(x) + Q1(x), где степень многочлена Q1(x) меньше степени многочлена Q(x). Многочлен Q1(x) в этом случае называется остатком от деления многочлена P(x) на Q(x), а многочлен c0xn-m+ c1xn-m-1 + … + cn-m – целой частью дроби P(x)/Q(x). На практике эти действия записываются уголком и поэтому алгоритм Евклида называется так «деление уголком».
-
Содержание
- Множества n,z,q,r
- Числовые промежутки
- Абсолютная величина (модуль) действительного числа и её основные св-ва
- Геометрический смысл модуля числа и модуля разности 2 чисел
- Числовая функция
- Обратная функция и её график. Обратные тригонометрические функции
- Основные элементарные функции. Композиция функций. Элементарные функции
- Комплексные числа. Действительная и мнимая части числа. Геометрическое изображение
- Формула Муавра
- Извлечение корней n-ой степени из комплексных чисел
- Многочлены в комплексной области. Условие
- Основная теорема алгебры (т. Гауса)
- Деление многочленов. Частное и остаток
- Теорема Безу и её следствие
- Кратность корня. Простые и кратные корни
- Многочлены с действительными коэффициентами: комплексная сопряжённость корней, разложение на линейные и квадратичные множители.
- Последовательность, её геометрическое изображение.
- Последовательность ограниченная, возрастающая, неубывающая, убывающая, невозрастающая, монотонная.
- Определение предела последовательности и его геометрический смысл. Сходящаяся последовательность.
- Бесконечно малые и бесконечно большие последовательности.
- Расходящиеся последовательности.
- Теорема Вейерштрасса (достаточное условие сходимости последовательности).
- Число е. Натуральные логарифмы.
- Арифметические действия над сходящимися последовательностями: теоремы о пределе суммы, произведения и частного.
- Определение предела функции в точке (через ε-δ), его символистическая запись и геометрическая интерпретация.
- Первый замечательный предел.
- Односторонние пределы.
- Предел функции при х→±∞.
- Второй замечательный предел. Следствия.
- Замечательный логарифмический предел
- Замечательный показательный предел
- Замечательный степенной предел
- Функция, ограниченная на данном множестве.
- Бесконечно-малые функции и их свойства: сумма бесконечно малых функций, произведение б.М. Функции на ограниченную.
- Теорема о связи между функцией, её пределом и бесконечно малой функцией.
- Теорема о пределе суммы, произведения и частного.
- Бесконечно большая функция.
- Связь между бесконечно большой и бесконечно малой функциями.
- Сравнение бесконечно малых функций. Символ «о» малое.
- Непрерывность функции на промежутке.
- Формулировка теорем о св-х непрерывных ф-ций: 1) не-сть суммы, произведения и частного, 2) непрерывность сложной ф-ии, 3) непрерывность обратной ф-ции..
- Непрерывность элементарных функций.
- Точки разрыва функции и их квалификация.
- Свойства функций, непрерывных на отрезке (формулировка, геометрические иллюстрации).
- Определение производной.
- Механический смысл производной.
- Определение дифференцируемой (в точке) функции.
- Необходимое и достаточное условие дифференцируемости функции.
- Теорема о связи между дифференцируемостью и непрерывностью.
- Пример непрерывной, но не дифференцируемой в некоторой точке функции.
- Односторонние производные.
- Касательная и нормаль к кривой. Уравнение касательной и нормали к графику функции.
- Геометрический смысл производной
- Бесконечная производная и вертикальная касательная.
- Правила дифференцирования (теоремы).
- Вычисление производных основных элементарных функций
- Параметрические заданные функции и их дифференцирование.
- Неявная функция и её дифференцирование.
- Приближенное вычисление приращения функции.
- Производные высших порядков.
- Механический смысл 2 производной.
- Определение вектор-функции действительной переменной. Годограф вектор-функции.
- Производная вектор-функции.