logo
ОТВЕТЫ МАТАН теория 1 семестр

Второй замечательный предел. Следствия.

  Докажем вначале теорему для случая последовательности

По формуле бинома Ньютона:

Полагая , получим:

      (1)

Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывет, поэтому величины возрастают. Поэтому последовательность — возрастающая, при этом

     (2).

Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство

Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:

.

Сумму в скобке найдем по формуле суммы членов геометрической прогрессии:

.

Поэтому       (3).

Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3):   .

Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для любого x, т.е. докажем, что . Рассмотрим два случая:

1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где n = [x] - это целая часть x.

Отсюда следует: , поэтому

.

Если , то . Поэтому, согласно пределу , имеем:

.

По признаку (о пределе промежуточной функции) существования пределов .

2. Пусть . Сделаем подстановку − x = t, тогда

.

Из двух этих случаев вытекает, что для любого x.   

Следствия

Доказательство следствия

Следствия из второго замечательного предела: