logo
2417_2

Решение

Подставим y = 3 и x = 1 в общее решение и найдем значение C : 3 = = C  13, C = 3. При подстановке C = 3 в общее решение, получаем частное решение y = 3x3.

Пример 4. Из общего интеграла x2 + y2 = C некоторого дифференциального уравнения найти частный интеграл, удовлетворяющий начальным условиям y(4) = –3.

Решение

Подставим y = –3 и x = 4 в общий интеграл и найдем значение C : 42 + (–3)2 = C, 25 = C. Из общего интеграла при C = 25 получаем частный интеграл x2 + y2 = 25.

Тест 1. Дифференциальным уравнением является уравнение:

1) x + 4 = 7;

2)

3)

4)

5)

Тест 2. Дифференциальным уравнением первого порядка является уравнение:

1)

2)

3)

4)

5)

Тест 3. Дифференциальным уравнением второго порядка является:

1)

2)

3)

4)

5)

Тест 4. Дифференциальным уравнением третьего порядка является:

1)

2)

3)

4)

5)

Тест 5. Решением дифференциального уравнения является функция:

1)

2)

3)

4)

Тест 6. Общим решением некоторого дифференциального уравнения является функция y = Cx3, тогда частным решением этого дифференциального уравнения, удовлетворяющим начальным условиям y(1) = 3, является:

1)

2)

3)

4)

5)

Тест 7. Общий интеграл некоторого дифференциального уравнения имеет вид x2 + y2 = C, тогда частным интегралом этого дифференциального уравнения, удовлетворяющим начальным условиям y(4) = –3, является:

1)

2)

3)

4)

5)