2417_2
Двойной интеграл
Пусть фигура Ф – плоская область D, которой принадлежит ее граница (кривая L). Мерой μ такой фигуры является его площадь s, т. е. μ = s. Обозначим также Δμi = Δsi и λ = max{Δsi}, i = 1, 2, , n. Тогда интегральная сумма (1) для функции z = f(P) = f(x; y) примет вид
Sn = =
и ее предел, если он существует, называется двойным интегралом от функции z = f(x; y) по области D и обозначается
= = (3)
где D – область интегрирования;
x, y – переменные интегрирования;
dxdy – дифференциал площади плоской области D.
Содержание
- Несобственные интегралы I и II рода
- 1) Расходится;
- Приближенные методы вычисления определенных интегралов
- Ответы на тестовые задания
- 2.10. Кратные интегралы
- Частные случаи интегралов по фигуре (кратных интегралов) Определенный интеграл
- Двойной интеграл
- Тройной интеграл
- Вычисление двойного интеграла
- Приложения двойных интегралов
- Ответы на тестовые задания
- 2.11. Обыкновенные дифференциальные уравнения Основные понятия
- Решение
- Дифференциальные уравнения первого порядка
- Ответы на тестовые задания
- Дифференциальные уравнения второго порядка
- Ответы на тестовые задания
- Ответы на тестовые задания
- 2.12. Ряды Числовые ряды
- Необходимый признак сходимости ряда
- Достаточные признаки сходимости знакопостоянных рядов
- Знакочередующиеся ряды и знакопеременные ряды
- Ответы на тестовые задания
- Степенные ряды
- Понятие степенного ряда
- 2) Расходится;
- Ряд Тейлора. Ряд Маклорена
- Ответы на тестовые задания
- Список рекомендуемой литературы
- Содержание
- Раздел I. Линейная алгебра и аналитическая геометрия 8
- Раздел II. Математический анализ и дифференциальные уравнения 91
- 246029, Г. Гомель, просп. Октября, 50.
- 2 46029, Г. Гомель, просп. Октября, 50.