2.11. Обыкновенные дифференциальные уравнения Основные понятия
Обыкновенным дифференциальным уравнением п-го порядка называется уравнение вида
(1)
связывающее независимую переменную х, искомую функцию у = у(х) и ее производные
Порядком дифференциального уравнения называется порядок старшей производной, входящей в уравнение.
Пример 1. Примерами дифференциальных уравнений первого порядка являются: xy + sin x y = 0, yy + (x2 + y2)y = ex; дифференциальных уравнений второго порядка являются: y + ysin x + y = 1, y + y – 2 = cos x; дифференциальных уравнений третьего порядка являются: и т. д.
Решением дифференциального уравнения (1) называется такая дифференцируемая функция y = (x), которая вместе со своими производными при подстановке в уравнение (1) обращает его в тождество. График этой функции называется интегральной кривой. Процесс отыскания решений называется интегрированием дифференциального уравнения.
Общим решением дифференциального уравнения -го порядка называется функция y = (x; C1; C2; ; Cn), которая зависит от переменной x и n независимых произвольных постоянных C1, C2, , Cn и вместе со своими производными обращает уравнение (1) в тождество.
Если решение задано в неявном виде (х; у) = 0, то оно называется интегралом уравнения (1).
Общее решение, заданное в неявном виде F(x; y; C1; C2; ; Cn) = 0, называется общим интегралом уравнения. Частным решением уравнения (1) называется решение, которое получается из общего решения, если придавать постоянным C1, C2, , Cn определенные числовые значения.
Задача Коши для дифференциального уравнения n-го порядка формулируется следующим образом: найти частное решение y = y(x) дифференциального уравнения (1), удовлетворяющее начальным условиям
Пример 2. Проверить, является ли функция y = Cx3 решением дифференциального уравнения 3y – xy = 0.
Решение
По условию: y = Cx3. Дифференцируя по переменной x, получаем y = (Cx3) = 3Cx2. Подставляя выражения y и y в данное дифференциальное уравнение, получаем тождество 3Cx3 – x 3Cx2 = 0. Следовательно, функция y = Cx3 является общим решением дифференциального уравнения 3y – xy = 0.
Пример 3. По общему решению y = Cx3 некоторого дифференциального уравнения найти частное решение, удовлетворяющее начальным условиям y(1) = 3.
- Несобственные интегралы I и II рода
- 1) Расходится;
- Приближенные методы вычисления определенных интегралов
- Ответы на тестовые задания
- 2.10. Кратные интегралы
- Частные случаи интегралов по фигуре (кратных интегралов) Определенный интеграл
- Двойной интеграл
- Тройной интеграл
- Вычисление двойного интеграла
- Приложения двойных интегралов
- Ответы на тестовые задания
- 2.11. Обыкновенные дифференциальные уравнения Основные понятия
- Решение
- Дифференциальные уравнения первого порядка
- Ответы на тестовые задания
- Дифференциальные уравнения второго порядка
- Ответы на тестовые задания
- Ответы на тестовые задания
- 2.12. Ряды Числовые ряды
- Необходимый признак сходимости ряда
- Достаточные признаки сходимости знакопостоянных рядов
- Знакочередующиеся ряды и знакопеременные ряды
- Ответы на тестовые задания
- Степенные ряды
- Понятие степенного ряда
- 2) Расходится;
- Ряд Тейлора. Ряд Маклорена
- Ответы на тестовые задания
- Список рекомендуемой литературы
- Содержание
- Раздел I. Линейная алгебра и аналитическая геометрия 8
- Раздел II. Математический анализ и дифференциальные уравнения 91
- 246029, Г. Гомель, просп. Октября, 50.
- 2 46029, Г. Гомель, просп. Октября, 50.