2417_2
Приближенные методы вычисления определенных интегралов
Существует много формул приближенного вычисления определенных интегралов. Приведем наиболее простую из них – формулу трапеций.
Пусть в интеграле функция f(x) непрерывна на отрезке [a; b]. Разобьем отрезок [a; b] на n равных частей точками = – значение функции = в точке Тогда имеет место так называемая формула трапеций
(8)
Пример 8. Вычислить приближенно определенный интеграл применив формулу трапеций, взяв n = 3.
Решение
Находим шаг h: Получаем: x0 = 1, x1 = 2, х2 = 3, х4 = 4. Тогда соответствующими значениями функции y0 = 1, Подставляя эти значения в формулу (8), получим
Тест 8. Вычислить приближенно определенный интеграл применив формулу трапеций, взяв n = 4:
1)
2) 2;
3)
4)
5)
Содержание
- Несобственные интегралы I и II рода
- 1) Расходится;
- Приближенные методы вычисления определенных интегралов
- Ответы на тестовые задания
- 2.10. Кратные интегралы
- Частные случаи интегралов по фигуре (кратных интегралов) Определенный интеграл
- Двойной интеграл
- Тройной интеграл
- Вычисление двойного интеграла
- Приложения двойных интегралов
- Ответы на тестовые задания
- 2.11. Обыкновенные дифференциальные уравнения Основные понятия
- Решение
- Дифференциальные уравнения первого порядка
- Ответы на тестовые задания
- Дифференциальные уравнения второго порядка
- Ответы на тестовые задания
- Ответы на тестовые задания
- 2.12. Ряды Числовые ряды
- Необходимый признак сходимости ряда
- Достаточные признаки сходимости знакопостоянных рядов
- Знакочередующиеся ряды и знакопеременные ряды
- Ответы на тестовые задания
- Степенные ряды
- Понятие степенного ряда
- 2) Расходится;
- Ряд Тейлора. Ряд Маклорена
- Ответы на тестовые задания
- Список рекомендуемой литературы
- Содержание
- Раздел I. Линейная алгебра и аналитическая геометрия 8
- Раздел II. Математический анализ и дифференциальные уравнения 91
- 246029, Г. Гомель, просп. Октября, 50.
- 2 46029, Г. Гомель, просп. Октября, 50.