3.3.1. Ряд Фурье
Если предположить, что реализация x(t) обладает периодичностью и период ее равен Тр, а основная частота fx = 1/Тр, то реализация может быть представлена рядом Фурье
где:
Пусть реализация x(t) имеет конечную длину Тr = Тp , равную основному периоду. Предположим также, что она состоит из четного числа N эквидистантных наблюдений с интервалом дискретности h, который выбран таким образом, что частота среза fc = 1/2h достаточно высока. Будем считать, что нулевая ордината реализации равна нулю, и обозначим, как и прежде, преобразованную последовательность в виде:
| (6) |
Вычислим теперь по всем N значениям реализации конечный ряд Фурье. Для любой точки t, принадлежащей интервалу (0, Тр), этот ряд имеет вид:
Коэффициенты А0 и B0 определяются выражениями:
Программа для расчета величин A0 и B0 должна содержать следующие операции:
-
определение величины 0 = 2qn/N при фиксированных значениях q и п;
-
вычисление cos и sin ;
-
вычисление xn*cos и xn*sin ;
-
вычисление суммы для каждого из этих выражений при n= 1, 2, .... N;
-
приращение аргумента q на единицу и повторение всех перечисленных действий.
Такой способ требует выполнения примерно .N2 операций умножения и сложения действительных чисел.
Поскольку затраты машинного времени и стоимость расчетов зависят от N2, при больших N такой стандартный метод вычисления коэффициентов A0 и B0 может оказаться дорогостоящим и потребовать значительного времени. Чтобы существенно снизить затраты машинного времени, были разработаны и введены в практику другие способы расчета, получившие название быстрого преобразования Фурье (БПФ). Рассмотрим детально эти важные методы, применяемые для цифрового анализа случайных процессов.
- 1. Классификация детерминированных процессов
- 1.1. Гармонические процессы
- 1.2. Полигармонические процессы
- 1.3. Переходные непериодические процессы
- 2. Классификация случайных процессов
- 2.1. Стационарные случайные процессы
- 2.2. Эргодические случайные процессы
- 2.3. Моменты второго порядка (среднее значение квадрата и дисперсия)
- 2.4. Автокорреляционная функция
- 2.5. Спектральная плотность
- 2.6. Теоремы о дискретном представлении случайных процессов
- 3. Цифровые методы анализа
- 3.1. Дискретное представление процессов
- 3.2. Применение цифровых фильтров
- 3.3. Ряд Фурье и быстрое преобразование Фурье
- 3.3.1. Ряд Фурье
- 3.3.2. Быстрое преобразование Фурье