Линейка
Описание
Данный метод состоит в последовательном выделении в квадратичной форме полных квадратов. Пусть
есть данная квадратичная форма. Возможны два случая:
хотя бы один из коэффициентов aii при квадратах отличен от нуля. Не нарушая общности, будем считать (этого всегда можно добиться соответствующей перенумерацией переменных);
все коэффициенты , но есть коэффициент , отличный от нуля (для определённости пусть будет ).
В первом случае преобразуем квадратичную форму следующим образом:
, где
, а через обозначены все остальные слагаемые.
представляет собой квадратичную форму от n-1 переменных .
С ней поступают аналогичным образом и так далее.
Заметим, что
Второй случай заменой переменных сводится к первому.
Содержание
- 1.Ассоциативность;
- Свойства обратной матрицы
- Описание метода
- Вектор в линейном пространстве
- Операции над векторами
- Вектор с координатами (-b,a) или (b,-a) называется направляющим вектором. Уравнения прямой на плоскости
- Общее уравнение прямой
- Уравнение прямой с угловым коэффициентом
- Классификация кривых второго порядка
- Вырожденные кривые
- Примеры
- 19) Однородные системы
- Примеры
- Описание