Линейка
Общее уравнение прямой
Общее уравнение прямой линии на плоскости в декартовых координатах:
где A, B и C — произвольные постоянные, причем постоянные A и B не равны нулю одновременно. Вектор с координатами (A,B)называется нормальным вектором и он перпендикулярен прямой. Вектор с координатами (-B,A) или (B,-A) называется направляющим вектором.
При C = 0 прямая проходит через начало координат. Также уравнение можно переписать в виде :
Содержание
- 1.Ассоциативность;
- Свойства обратной матрицы
- Описание метода
- Вектор в линейном пространстве
- Операции над векторами
- Вектор с координатами (-b,a) или (b,-a) называется направляющим вектором. Уравнения прямой на плоскости
- Общее уравнение прямой
- Уравнение прямой с угловым коэффициентом
- Классификация кривых второго порядка
- Вырожденные кривые
- Примеры
- 19) Однородные системы
- Примеры
- Описание